The search functionality is under construction.

Author Search Result

[Author] Weihua PEI(2hit)

1-2hit
  • High-Speed Spelling in Virtual Reality with Sequential Hybrid BCIs

    Zhaolin YAO  Xinyao MA  Yijun WANG  Xu ZHANG  Ming LIU  Weihua PEI  Hongda CHEN  

     
    LETTER-Biological Engineering

      Pubricized:
    2018/07/25
      Vol:
    E101-D No:11
      Page(s):
    2859-2862

    A new hybrid brain-computer interface (BCI), which is based on sequential controls by eye tracking and steady-state visual evoked potentials (SSVEPs), has been proposed for high-speed spelling in virtual reality (VR) with a 40-target virtual keyboard. During target selection, gaze point was first detected by an eye-tracking accessory. A 4-target block was then selected for further target selection by a 4-class SSVEP BCI. The system can type at a speed of 1.25 character/sec in a cue-guided target selection task. Online experiments on three subjects achieved an averaged information transfer rate (ITR) of 360.7 bits/min.

  • An Implantable Sacral Nerve Root Recording and Stimulation System for Micturition Function Restoration

    Yuan WANG  Xu ZHANG  Ming LIU  Weihua PEI  Kaifeng WANG  Hongda CHEN  

     
    PAPER-Biological Engineering

      Vol:
    E97-D No:10
      Page(s):
    2790-2801

    This paper provides a prototype neural prosthesis system dedicated to restoring continence and micturition function for patients with lower urinary tract diseases, such as detrusor hyperreflexia and detrusor-sphincter dyssynergia. This system consists of an ultra low-noise electroneurogram (ENG) signal recording module, a bi-phasic electrical stimulator module and a control unit for closed-loop bladder monitoring and controlling. In order to record extremely weak ENG signal from extradural sacral nerve roots, the system provides a programmable gain from 80 dB to 117 dB. By combining of advantages of commercial-off-the-shelf (COTS) electronics and custom designed IC, the recording front-end acquires a fairly low input-referred noise (IRN) of 0.69 μVrms under 300 Hz to 3 kHz and high area-efficiency. An on-chip multi-steps single slope analog-to-digital converter (ADC) is used to digitize the ENG signals at sampling rate of 10 kSPS and achieves an effective number of bits (ENOB) of 12.5. A bi-phasic current stimulus generator with wide voltage supply range (±0.9 V to ±12.5 V) and variable output current amplitude (0-500 μA) is introduced to overcome patient-depended impedance between electrode and tissue electrolyte. The total power consumption of the entire system is 5.61 mW. Recording and stimulation function of this system is switched by control unit with time division multiplexing strategy. The functionality of this proposed prototype system has been successfully verified through in-vivo experiments from dogs extradural sacral nerve roots.