1-2hit |
Liwei WANG Yanduo ZHANG Tao LU Wenhua FANG Yu WANG
Person re-identification (Re-ID) aims to match the same pedestrain identity images across different camera views. Because pedestrians will change clothes frequently for a relatively long time, while many current methods rely heavily on color appearance information or only focus on the person biometric features, these methods make the performance dropped apparently when it is applied to Clohting-Changing. To relieve this dilemma, we proposed a novel Multi Feature Fusion Attention Network (MFFAN), which learns the fine-grained local features. Then we introduced a Clothing Adaptive Attention (CAA) module, which can integrate multiple granularity features to guide model to learn pedestrain's biometric feature. Meanwhile, in order to fully verify the performance of our method on clothing-changing Re-ID problem, we designed a Clothing Generation Network (CGN), which can generate multiple pictures of the same identity wearing different clothes. Finally, experimental results show that our method exceeds the current best method by over 5% and 6% on the VCcloth and PRCC datasets respectively.
Wenhua FAN Chen CHEN Yun CHEN Zhiyi YU Xiaoyang ZENG
This paper presents an efficient implementation of OFDM inner receiver on a programmable multi-core processor platform with CMMB as an application. The platform consists of an array of programmable SIMD processors interconnected in a 2-D mesh network, which can provide high performance and is quite suitable for wireless communication applications. Implemented on one cluster with 8 cores, the receiver includes symbol timing, carrier frequency offset and sampling frequency offset synchronization, channel estimation and equalization. Multiple optimization techniques are explored to improve system throughput such as: task-level parallelism on many cores, data-level parallelism on SIMD cores, minimization of memory access and route-length-minimization task mapping techniques. Besides, efficient memory strategy and specific instructions for complex computation increase the performance. The simulation results show that the inner receiver could achieve a throughput of up to 120 Mbps when operating at 750 MHz.