The search functionality is under construction.

Author Search Result

[Author] Yun CHEN(12hit)

1-12hit
  • Low-Rank and Sparse Decomposition Based Frame Difference Method for Small Infrared Target Detection in Coastal Surveillance

    Weina ZHOU  Xiangyang XUE  Yun CHEN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/11/11
      Vol:
    E99-D No:2
      Page(s):
    554-557

    Detecting small infrared targets is a difficult but important task in highly cluttered coastal surveillance. The paper proposed a method called low-rank and sparse decomposition based frame difference to improve the detection performance of a surveillance system. First, the frame difference is used in adjacent frames to detect the candidate object regions which we are most interested in. Then we further exclude clutters by low-rank and sparse matrix recovery. Finally, the targets are extracted from the recovered target component by a local self-adaptive threshold. The experiment results show that, the method could effectively enhance the system's signal-to-clutter ratio gain and background suppression factor, and precisely extract target in highly cluttered coastal scene.

  • Efficient Implementation of OFDM Inner Receiver on a Programmable Multi-Core Processor Platform

    Wenhua FAN  Chen CHEN  Yun CHEN  Zhiyi YU  Xiaoyang ZENG  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1241-1248

    This paper presents an efficient implementation of OFDM inner receiver on a programmable multi-core processor platform with CMMB as an application. The platform consists of an array of programmable SIMD processors interconnected in a 2-D mesh network, which can provide high performance and is quite suitable for wireless communication applications. Implemented on one cluster with 8 cores, the receiver includes symbol timing, carrier frequency offset and sampling frequency offset synchronization, channel estimation and equalization. Multiple optimization techniques are explored to improve system throughput such as: task-level parallelism on many cores, data-level parallelism on SIMD cores, minimization of memory access and route-length-minimization task mapping techniques. Besides, efficient memory strategy and specific instructions for complex computation increase the performance. The simulation results show that the inner receiver could achieve a throughput of up to 120 Mbps when operating at 750 MHz.

  • A 1.5 Gb/s Highly Parallel Turbo Decoder for 3GPP LTE/LTE-Advanced

    Yun CHEN  Xubin CHEN  Zhiyuan GUO  Xiaoyang ZENG  Defeng HUANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E96-B No:5
      Page(s):
    1211-1214

    A highly parallel turbo decoder for 3GPP LTE/LTE-Advanced systems is presented. It consists of 32 radix-4 soft-in/soft-out (SISO) decoders. Each SISO decoder is based on the proposed full-parallel sliding window (SW) schedule. Implemented in a 0.13 µm CMOS technology, the proposed design occupies 12.96 mm2 and achieves 1.5 Gb/s while decoding size-6144 blocks with 5.5 iterations. Compared with conventional SW schedule, the throughput is improved by 30–76% with 19.2% area overhead and negligible energy overhead.

  • Rapid Acquisition Assisted by Navigation Data for Inter-Satellite Links of Navigation Constellation

    Xian-Bin LI  Yue-Ke WANG  Jian-Yun CHEN  Shi-ce NI  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E97-B No:4
      Page(s):
    915-922

    Introducing inter-satellite ranging and communication links in a Global Navigation Satellite System (GNSS) can improve its performance. In view of the highly dynamic characteristics and the rapid but reliable acquisition requirement of inter-satellite link (ISL) signal of navigation constellation, we utilize navigation data, which is the special resource of navigation satellites, to assist signal acquisition. In this paper, we introduce a method that uses the navigation data for signal acquisition from three aspects: search space, search algorithm, and detector structure. First, an iteration method to calculate the search space is presented. Then the most efficient algorithm is selected by comparing the computation complexity of different search algorithms. Finally, with the navigation data, we also propose a method to guarantee the detecting probability constant by adjusting the non-coherent times. An analysis shows that with the assistance of navigation data, we can reduce the computing cost of ISL signal acquisition significantly, as well effectively enhancing acquisition speed and stabling the detection probability.

  • An Area-Efficient Reconfigurable LDPC Decoder with Conflict Resolution

    Changsheng ZHOU  Yuebin HUANG  Shuangqu HUANG  Yun CHEN  Xiaoyang ZENG  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    478-486

    Based on Turbo-Decoding Message-Passing (TDMP) and Normalized Min-Sum (NMS) algorithm, an area efficient LDPC decoder that supports both structured and unstructured LDPC codes is proposed in this paper. We introduce a solution to solve the memory access conflict problem caused by TDMP algorithm. We also arrange the main timing schedule carefully to handle the operations of our solution while avoiding much additional hardware consumption. To reduce the memory bits needed, the extrinsic message storing strategy is also optimized. Besides the extrinsic message recover and the accumulate operation are merged together. To verify our architecture, a LDPC decoder that supports both China Multimedia Mobile Broadcasting (CMMB) and Digital Terrestrial/ Television Multimedia Broadcasting (DTMB) standards is developed using SMIC 0.13 µm standard CMOS process. The core area is 4.75 mm2 and the maximum operating clock frequency is 200 MHz. The estimated power consumption is 48.4 mW at 25 MHz for CMMB and 130.9 mW at 50 MHz for DTMB with 5 iterations and 1.2 V supply.

  • A Novel Five-Point Algorithm of Phase Noise Cancellation in DTMB

    Yun CHEN  Xiaoyang ZENG  An PAN  Jing WANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:11
      Page(s):
    2608-2611

    A novel five-point algorithm to remove phase noise in Chinese digital terrestrial media broadcasting system is proposed under the assumption that the bandwidth of phase noise is narrow. Simulation results demonstrate that the proposed method can provide 1-3 dB gains in AWGN and 1-4 dB in multi-path compared with those without compensation.

  • Efficient Iterative Frequency Domain Equalization for Single Carrier System with Insufficient Cyclic Prefix

    Chuan WU  Dan BAO  Xiaoyang ZENG  Yun CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2174-2177

    In this letter we present efficient iterative frequency domain equalization for single-carrier (SC) transmission systems with insufficient cyclic prefix (CP). Based on minimum mean square error (MMSE) criteria, iterative decision feedback frequency domain equalization (IDF-FDE) combined with cyclic prefix reconstruction (CPR) is derived to mitigate inter-symbol interference (ISI) and inter-carrier interference (ICI). Computer simulation results reveal that the proposed scheme significantly improves the performance of SC systems with insufficient CP compared with previous schemes.

  • A Reconfigurable 74-140Mbps LDPC Decoding System for CCSDS Standard

    Yun CHEN  Jimin WANG  Shixian LI  Jinfou XIE  Qichen ZHANG  Keshab K. PARHI  Xiaoyang ZENG  

     
    PAPER

      Pubricized:
    2021/05/25
      Vol:
    E104-A No:11
      Page(s):
    1509-1515

    Accumulate Repeat-4 Jagged-Accumulate (AR4JA) codes, which are channel codes designed for deep-space communications, are a series of QC-LDPC codes. Structures of these codes' generator matrix can be exploited to design reconfigurable encoders. To make the decoder reconfigurable and achieve shorter convergence time, turbo-like decoding message passing (TDMP) is chosen as the hardware decoder's decoding schedule and normalized min-sum algorithm (NMSA) is used as decoding algorithm to reduce hardware complexity. In this paper, we propose a reconfigurable decoder and present its FPGA implementation results. The decoder can achieve throughput greater than 74 Mbps.

  • A Fully Programmable Reed-Solomon Decoder on a Multi-Core Processor Platform

    Bei HUANG  Kaidi YOU  Yun CHEN  Zhiyi YU  Xiaoyang ZENG  

     
    PAPER-Computer Architecture

      Vol:
    E95-D No:12
      Page(s):
    2939-2947

    Reed-Solomon (RS) codes are widely used in digital communication and storage systems. Unlike usual VLSI approaches, this paper presents a high throughput fully programmable Reed-Solomon decoder on a multi-core processor. The multi-core processor platform is a 2-Dimension mesh array of Single Instruction Multiple Data (SIMD) cores, and it is well suited for digital communication applications. By fully extracting the parallelizable operations of the RS decoding process, we propose multiple optimization techniques to improve system throughput, including: task level parallelism on different cores, data level parallelism on each SIMD core, minimizing memory access, and route length minimized task mapping techniques. For RS(255, 239, 8), experimental results show that our 12-core implementation achieve a throughput of 4.35 Gbps, which is much better than several other published implementations. From the results, it is predictable that the throughput is linear with the number of cores by our approach.

  • A Cost-Efficient LDPC Decoder for DVB-S2 with the Solution to Address Conflict Issue

    Yan YING  Dan BAO  Zhiyi YU  Xiaoyang ZENG  Yun CHEN  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:8
      Page(s):
    1415-1424

    In this paper, a cost-efficient LDPC decoder for DVB-S2 is presented. Based on the Normalized Min-Sum algorithm and the turbo-decoding message-passing (TDMP) algorithm, a dual line-scan scheduling is proposed to enable hardware reusing. Furthermore, we present the solution to the address conflict issue caused by the characteristic of the parity-check matrix defined by DVB-S2 LDPC codes. Based on SMIC 0.13 µm standard CMOS process, the LDPC decoder has an area of 12.51 mm2. The required operating frequency to meet the throughput requirement of 135 Mbps with maximum iteration number of 30 is 105 MHz. Compared with the latest published DVB-S2 LDPC decoder, the proposed decoder reduces area cost by 34%.

  • A Flexible LDPC Decoder Architecture Supporting TPMP and TDMP Decoding Algorithms

    Shuangqu HUANG  Xiaoyang ZENG  Yun CHEN  

     
    PAPER-Application

      Vol:
    E95-D No:2
      Page(s):
    403-412

    In this paper a programmable and area-efficient decoder architecture supporting two decoding algorithms for Block-LDPC codes is presented. The novel decoder can be configured to decode in either TPMP or TDMP decoding mode according to different Block-LDPC codes, essentially combining the advantages of two decoding algorithms. With a regular and scalable data-path, a Reconfigurable Serial Processing Engine (RSPE) is proposed to achieve area efficiency. To verify our proposed architecture, a flexible LDPC decoder fully compliant to IEEE 802.16e applications is implemented on a 130 nm 1P8M CMOS technology with a total area of 6.3 mm2 and maximum operating frequency of 250 MHz. The chip dissipates 592 mW when operates at 250 MHz frequency and 1.2 V supply.

  • A Flexible Architecture for TURBO and LDPC Codes

    Yun CHEN  Yuebin HUANG  Chen CHEN  Changsheng ZHOU  Xiaoyang ZENG  

     
    LETTER-High-Level Synthesis and System-Level Design

      Vol:
    E95-A No:12
      Page(s):
    2392-2395

    Turbo codes and LDPC (Low-Density Parity-Check) codes are two of the most powerful error correction codes that can approach Shannon limit in many communication systems. But there are little architecture presented to support both LDPC and Turbo codes, especially by the means of ASIC. This paper have implemented a common architecture that can decode LDPC and Turbo codes, and it is capable of supporting the WiMAX, WiFi, 3GPP-LTE standard on the same hardware. In this paper, we will carefully describe how to share memory and logic devices in different operation mode. The chip is design in a 130 nm CMOS technology, and the maximum clock frequency can reach up to 160 MHz. The maximum throughput is about 104 Mbps@5.5 iteration for Turbo codes and 136 Mbps@10iteration for LDPC codes. Comparing to other existing structure, the design speed, area have significant advantage.