The search functionality is under construction.

Author Search Result

[Author] Xia LI(11hit)

1-11hit
  • Matrix Factorization Based Recommendation Algorithm for Sharing Patent Resource

    Xueqing ZHANG  Xiaoxia LIU  Jun GUO  Wenlei BAI  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1250-1257

    As scientific and technological resources are experiencing information overload, it is quite expensive to find resources that users are interested in exactly. The personalized recommendation system is a good candidate to solve this problem, but data sparseness and the cold starting problem still prevent the application of the recommendation system. Sparse data affects the quality of the similarity measurement and consequently the quality of the recommender system. In this paper, we propose a matrix factorization recommendation algorithm based on similarity calculation(SCMF), which introduces potential similarity relationships to solve the problem of data sparseness. A penalty factor is adopted in the latent item similarity matrix calculation to capture more real relationships furthermore. We compared our approach with other 6 recommendation algorithms and conducted experiments on 5 public data sets. According to the experimental results, the recommendation precision can improve by 2% to 9% versus the traditional best algorithm. As for sparse data sets, the prediction accuracy can also improve by 0.17% to 18%. Besides, our approach was applied to patent resource exploitation provided by the wanfang patents retrieval system. Experimental results show that our method performs better than commonly used algorithms, especially under the cold starting condition.

  • Dynamic Power Allocation Based on Rain Attenuation Prediction for High Throughput Broadband Satellite Systems

    Shengchao SHI  Guangxia LI  Zhiqiang LI  Bin GAO  Zhangkai LUO  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E100-A No:9
      Page(s):
    2038-2043

    Broadband satellites, operating at Ka band and above, are playing more and more important roles in future satellite networks. Meanwhile, rain attenuation is the dominant impairment in these bands. In this context, a dynamic power allocation scheme based on rain attenuation prediction is proposed. By this scheme, the system can dynamically adjust the allocated power according to the time-varying predicted rain attenuation. Extensive simulation results demonstrate the improvement of the dynamic scheme over the static allocation. It can be concluded that the allocated capacities match the traffic demands better by introducing such dynamic power allocation scheme and the waste of power resources is also avoided.

  • A Family of at Least Almost Optimal p-Ary Cyclic Codes

    Xia LI  Deng TANG  Feng CHENG  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:9
      Page(s):
    2048-2051

    Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms compared with the linear block codes. The objective of this letter is to present a family of p-ary cyclic codes with length $ rac{p^m-1}{p-1}$ and dimension $ rac{p^m-1}{p-1}-2m$, where p is an arbitrary odd prime and m is a positive integer with gcd(p-1,m)=1. The minimal distance d of the proposed cyclic codes are shown to be 4≤d≤5 which is at least almost optimal with respect to some upper bounds on the linear code.

  • Recognition of Collocation Frames from Sentences

    Xiaoxia LIU  Degen HUANG  Zhangzhi YIN  Fuji REN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2018/12/14
      Vol:
    E102-D No:3
      Page(s):
    620-627

    Collocation is a ubiquitous phenomenon in languages and accurate collocation recognition and extraction is of great significance to many natural language processing tasks. Collocations can be differentiated from simple bigram collocations to collocation frames (referring to distant multi-gram collocations). So far little focus is put on collocation frames. Oriented to translation and parsing, this study aims to recognize and extract the longest possible collocation frames from given sentences. We first extract bigram collocations with distributional semantics based method by introducing collocation patterns and integrating some state-of-the-art association measures. Based on bigram collocations extracted by the proposed method, we get the longest collocation frames according to recursive nature and linguistic rules of collocations. Compared with the baseline systems, the proposed method performs significantly better in bigram collocation extraction both in precision and recall. And in extracting collocation frames, the proposed method performs even better with the precision similar to its bigram collocation extraction results.

  • Real-Time Road-Direction Point Detection in Complex Environment

    Huimin CAI  Eryun LIU  Hongxia LIU  Shulong WANG  

     
    PAPER-Software System

      Pubricized:
    2017/11/13
      Vol:
    E101-D No:2
      Page(s):
    396-404

    A real-time road-direction point detection model is developed based on convolutional neural network architecture which can adapt to complex environment. Firstly, the concept of road-direction point is defined for either single road or crossroad. For single road, the predicted road-direction point can serve as a guiding point for a self-driving vehicle to go ahead. In the situation of crossroad, multiple road-direction points can also be detected which will help this vehicle to make a choice from possible directions. Meanwhile, different types of road surface can be classified by this model for both paved roads and unpaved roads. This information will be beneficial for a self-driving vehicle to speed up or slow down according to various road conditions. Finally, the performance of this model is evaluated on different platforms including Jetson TX1. The processing speed can reach 12 FPS on this portable embedded system so that it provides an effective and economic solution of road-direction estimation in the applications of autonomous navigation.

  • A Hybrid CRBP-VMP Cooperative Positioning Algorithm for Distributed Multi-UAVs

    Lu LU  Guangxia LI  Tianwei LIU  Siming LI  Shiwei TIAN  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1933-1940

    Positioning information plays a significant role in multi-unmanned aerial vehicles (UAVs) applications. Traditionally, the positioning information is widely provided by Global Navigation Satellite System (GNSS) due to its good performance and global coverage. However, owing to complicated flight environment or signal blockage, jamming and unintentional interference, the UAVs may fail to locate themselves by using GNSS alone. As a new method to resolve these problems, cooperative positioning, by incorporating peer-to-peer range measurements and assisted information, has attracted more and more attentions due to its ability to enhance the accuracy and availability of positioning. However, achieving good performance of cooperative positioning of multi-UAVs is challenging as their mobility, arbitrary nonlinear state-evolution, measurement models and limited computation and communication resources. In this paper, we present a factor graph (FG) representation and message passing methodology to solve cooperative positioning problem among UAVs in 3-dimensional environment where GNSS cannot provide services. Moreover, to deal with the nonlinear state-evolution and measurement models while decreasing the computation complexity and communication cost, we develop a distributed algorithm for dynamic and hybrid UAVs by means of Spherical-Radial Cubature Rules (CR) method with belief propagation (BP) and variational message passing (VMP) methods (CRBP-VMP) on the FG. The proposed CRBP deals with the highly non-linear state-evolution models and non-Gaussian distributions, the VMP method is employed for ranging message, gets the simpler message representation and can reduce communication cost in the joint estimation problem. Simulation results demonstrate that the higher positioning accuracy, the better convergence as well as low computational complexity and communication cost of the proposed CRBP-VMP algorithm, which can be achieved compared with sum-product algorithm over a wireless network (SPAWN) and traditional Cubature Kalman Filters (CKF) method.

  • ORRIS: Throughput Optimization for Backscatter Link on Physical and MAC Layers

    Jumin ZHAO  Yanxia LI  Dengao LI  Hao WU  Biaokai ZHU  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2019/04/05
      Vol:
    E102-B No:10
      Page(s):
    2082-2090

    Unlike Radio Frequency Identification (RFID), emerging Computational RFID (CRFID) integrates the RF front-end and MCU with multiple sensors. CRFIDs need to transmit data within the interrogator range, so when the tags moved rapidly or the contact duration with interrogator is limited, the sensor data collected by CRFID must be transferred to interrogator quickly. In this paper, we focus on throughput optimization for backscatter link, take physical and medium access control (MAC) layers both into consideration, put forward our scheme called ORRIS. On physical layer, we propose Cluster Gather Degree (CGD) indicator, which is the clustering degree of signal in IQ domain. Then CGD is regarded as the criterion to adaptively adjust the rate encoding mode and link frequency, accordingly achieve adaptive rate transmission. On MAC layer, based on the idea of asynchronous transfer, we utilize the the number of clusters in IQ domain to select the optimal Q value as much as possible. So that achieve burst transmission or bulk data transmission. Experiments and analyses on the static and mobile scenarios show that our proposal has significantly better mean throughput than BLINK or CARA, which demonstrate the effectiveness of our scheme.

  • Two Classes of Optimal Constant Composition Codes from Zero Difference Balanced Functions

    Bing LIU  Xia LI  Feng CHENG  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:10
      Page(s):
    2183-2186

    Constant composition codes (CCCs) are a special class of constant-weight codes. They include permutation codes as a subclass. The study and constructions of CCCs with parameters meeting certain bounds have been an interesting research subject in coding theory. A bridge from zero difference balanced (ZDB) functions to CCCs with parameters meeting the Luo-Fu-Vinck-Chen bound has been established by Ding (IEEE Trans. Information Theory 54(12) (2008) 5766-5770). This provides a new approach for obtaining optimal CCCs. The objective of this letter is to construct two classes of ZDB functions whose parameters not covered in the literature, and then obtain two classes of optimal CCCs meeting the Luo-Fu-Vinck-Chen bound from these new ZDB functions.

  • A Security Enhanced 5G Authentication Scheme for Insecure Channel

    Xinxin HU  Caixia LIU  Shuxin LIU  Xiaotao CHENG  

     
    LETTER-Information Network

      Pubricized:
    2019/12/11
      Vol:
    E103-D No:3
      Page(s):
    711-713

    More and more attacks are found due to the insecure channel between different network domains in legacy mobile network. In this letter, we discover an attack exploiting SUCI to track a subscriber in 5G network, which is directly caused by the insecure air channel. To cover this issue, a secure authentication scheme is proposed utilizing the existing PKI mechanism. Not only dose our protocol ensure the authentication signalling security in the channel between UE and SN, but also SN and HN. Further, formal methods are adopted to prove the security of the proposed protocol.

  • A Vulnerability in 5G Authentication Protocols and Its Countermeasure

    Xinxin HU  Caixia LIU  Shuxin LIU  Jinsong LI  Xiaotao CHENG  

     
    LETTER-Formal Approaches

      Pubricized:
    2020/03/27
      Vol:
    E103-D No:8
      Page(s):
    1806-1809

    5G network will serve billions of people worldwide in the near future and protecting human privacy from being violated is one of its most important goals. In this paper, we carefully studied the 5G authentication protocols (namely 5G AKA and EAP-AKA') and a location sniffing attack exploiting 5G authentication protocols vulnerability is found. The attack can be implemented by an attacker through inexpensive devices. To cover this vulnerability, a fix scheme based on the existing PKI mechanism of 5G is proposed to enhance the authentication protocols. The proposed scheme is successfully verified with formal methods and automatic verification tool TAMARIN. Finally, the communication overhead, computational cost and storage overhead of the scheme are analyzed. The results show that the security of the fixed authentication protocol is greatly improved by just adding a little calculation and communication overhead.

  • Intrinsic Representation Mining for Zero-Shot Slot Filling

    Sixia LI  Shogo OKADA  Jianwu DANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2022/08/19
      Vol:
    E105-D No:11
      Page(s):
    1947-1956

    Zero-shot slot filling is a domain adaptation approach to handle unseen slots in new domains without training instances. Previous studies implemented zero-shot slot filling by predicting both slot entities and slot types. Because of the lack of knowledge about new domains, the existing methods often fail to predict slot entities for new domains as well as cannot effectively predict unseen slot types even when slot entities are correctly identified. Moreover, for some seen slot types, those methods may suffer from the domain shift problem, because the unseen context in new domains may change the explanations of the slots. In this study, we propose intrinsic representations to alleviate the domain shift problems above. Specifically, we propose a multi-relation-based representation to capture both the general and specific characteristics of slot entities, and an ontology-based representation to provide complementary knowledge on the relationships between slots and values across domains, for handling both unseen slot types and unseen contexts. We constructed a two-step pipeline model using the proposed representations to solve the domain shift problem. Experimental results in terms of the F1 score on three large datasets—Snips, SGD, and MultiWOZ 2.3—showed that our model outperformed state-of-the-art baselines by 29.62, 10.38, and 3.89, respectively. The detailed analysis with the average slot F1 score showed that our model improved the prediction by 25.82 for unseen slot types and by 10.51 for seen slot types. The results demonstrated that the proposed intrinsic representations can effectively alleviate the domain shift problem for both unseen slot types and seen slot types with unseen contexts.