The search functionality is under construction.

Author Search Result

[Author] Yasuhiro TAKE(6hit)

1-6hit
  • Data-Transfer-Aware Design of an FPGA-Based Heterogeneous Multicore Platform with Custom Accelerators

    Yasuhiro TAKEI  Hasitha Muthumala WAIDYASOORIYA  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E98-A No:12
      Page(s):
    2658-2669

    For an FPGA-based heterogeneous multicore platform, we present the design methodology to reduce the total processing time considering data-transfer. The reconfigurability of recent FPGAs with hard CPU cores allows us to realize a single-chip heterogeneous processor optimized for a given application. The major problem in designing such heterogeneous processors is data-transfer between CPU cores and accelerator cores. The total processing time with data-transfers is modeled considering the overlap of computation time and data-transfer time, and optimal design parameters are searched for.

  • Through Chip Interface Based Three-Dimensional FPGA Architecture Exploration

    Li-Chung HSU  Masato MOTOMURA  Yasuhiro TAKE  Tadahiro KURODA  

     
    PAPER

      Vol:
    E98-C No:4
      Page(s):
    288-297

    This paper presents work on integrating wireless 3-D interconnection interface, namely ThruChip Interface (TCI), in three-dimensional field-programmable gate array (3-D FPGA) exploration tool (TPR). TCI is an emerging 3-D IC integration solution because of its advantages over cost, flexibility, reliability, comparable performance, and energy dissipation in comparison to through-silicon-via (TSV). Since the communication bandwidth of TCI is much higher than FPGA internal logic signals, in order to fully utilize its bandwidth, the time-division multiplexing (TDM) scheme is adopted. The experimental results show 25% on average and 58% at maximum path delay reduction over 2-D FPGA when five layers are used in TCI based 3-D FPGA architecture. Although the performance of TCI based 3-D FPGA architecture is 8% below that of TSV based 3-D FPGA on average, TCI based architecture can reduce active area consumed by vertical communication channels by 42% on average in comparison to TSV based architecture and hence leads to better delay and area product.

  • A Study of Physical Design Guidelines in ThruChip Inductive Coupling Channel

    Li-Chung HSU  Junichiro KADOMOTO  So HASEGAWA  Atsutake KOSUGE  Yasuhiro TAKE  Tadahiro KURODA  

     
    PAPER-Physical Level Design

      Vol:
    E98-A No:12
      Page(s):
    2584-2591

    ThruChip interface (TCI) is an emerging wireless interface in three-dimensional (3-D) integrated circuit (IC) technology. However, the TCI physical design guidelines remain unclear. In this paper, a ThruChip test chip is designed and fabricated for design guidelines exploration. Three inductive coupling interface physical design scenarios, baseline, power mesh, and dummy metal fill, are deployed in the test chip. In the baseline scenario, the test chip measurement results show that thinning chip or enlarging coil dimension can further reduce TCI power. The power mesh scenario shows that the eddy current on power mesh can dramatically reduce magnetic pulse signal and thus possibly cause TCI to fail. A power mesh splitting method is proposed to effectively suppress eddy current impact while minimizing power mesh structure impact. The simulation results show that the proposed method can recover 77% coupling coefficient loss while only introducing additional 0.5% IR-drop. In dummy metal fill case, dummy metal fill enclosed within TCI coils have no impact on TCI transmission and thus are ignorable.

  • Evaluation of an FPGA-Based Heterogeneous Multicore Platform with SIMD/MIMD Custom Accelerators

    Yasuhiro TAKEI  Hasitha Muthumala WAIDYASOORIYA  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E96-A No:12
      Page(s):
    2576-2586

    Heterogeneous multi-core architectures with CPUs and accelerators attract many attentions since they can achieve power-efficient computing in various areas from low-power embedded processing to high-performance computing. Since the optimal architecture is different from application to application, finding the most suitable accelerator is very important. In this paper, we propose an FPGA-based heterogeneous multi-core platform with custom accelerators for power-efficient computing. Using the proposed platform, we evaluate several applications and accelerators to identify many key requirements of the applications and properties of the accelerators. Such an evaluation is very important to select and optimize the most suitable accelerator according to the requirements of an application to achieve the best performance.

  • Relay Transmission Thruchip Interface with Low-Skew 3D Clock Distribution Network

    Yasuhiro TAKE  Tadahiro KURODA  

     
    PAPER

      Vol:
    E98-C No:4
      Page(s):
    322-332

    This paper presents an inductive coupling interface using a relay transmission scheme and a low-skew 3D clock distribution network synchronized with an external reference clock source for 3D chip stacking. A relayed transmission scheme using one coil is proposed to reduce the number of coils in a data link. Coupled resonation is utilized for clock and data recovery (CDR) for the first time in the world, resulting in the elimination of a source-synchronous clock link. As a result, the total number of coils required is reduced to one-fifth of the conventional number required, yielding a significant improvement in data rate, layout area, and energy consumption. A low-skew 3D clock distribution network utilizes vertically coupled LC oscillators and horizontally coupled ring oscillators. The proposed frequency-locking and phase-pulling scheme widens the lock range to $pm$ 10%. Two test chips were designed and fabricated in 0.18 $mu$m CMOS. The bandwidth of the proposed interface using relay transmission ThruChip Interface (TCI) is 2.7 Gb/s/mm$^2$; energy consumption per chip is 0.9 pJ/b/chip. Clock skew is less than 18- and 25- ps under a 1.8- and 0.9- V supply. The distributed RMS jitter is smaller than 1.72 ps.

  • Vertical Link On/Off Regulations for Inductive-Coupling Based Wireless 3-D NoCs

    Hao ZHANG  Hiroki MATSUTANI  Yasuhiro TAKE  Tadahiro KURODA  Hideharu AMANO  

     
    PAPER-Computer System

      Vol:
    E96-D No:12
      Page(s):
    2753-2764

    We propose low-power techniques for wireless three-dimensional Network-on-Chips (wireless 3-D NoCs), in which the connections among routers on the same chip are wired while the routers on different chips are connected wirelessly using inductive-coupling. The proposed low-power techniques stop the clock and power supplies to the transmitter of the wireless vertical links only when their utilizations are higher than the threshold. Meanwhile, the whole wireless vertical link will be shut down when the utilization is lower than the threshold in order to reduce the power consumption of wireless 3-D NoCs. This paper uses an on-demand method, in which the dormant data transmitter or the whole vertical link will be activated as long as a flit comes. Full-system many-core simulations using power parameters derived from a real chip implementation show that the proposed low-power techniques reduce the power consumption by 23.4%-29.3%, while the performance overhead is less than 2.4%.