The search functionality is under construction.

Author Search Result

[Author] Yi ZOU(2hit)

1-2hit
  • Stochastic Interconnect Tree Construction Algorithm with Accurate Delay and Power Consideration

    Yibo WANG  Yici CAI  Xianlong HONG  Yi ZOU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E90-A No:5
      Page(s):
    1028-1037

    Buffer insertion plays a great role in modern global interconnect optimization. But too many buffers exhaust routing resources, and result in the rise of the power dissipation. Unfortunately, simplified delay models used by most of the present buffer insertion algorithms may introduce redundant buffers due to the delay estimation errors, whereas accurate delay models expand the solution space significantly, resulting in unacceptable runtime. Moreover, the power dissipation problem becomes a dominant factor in the state-of-the-art IC design. Not only transistor but also interconnect should be taken into consideration in the power calculation, which makes us have to use an accurate power model to calculate the total power dissipation. In this paper, we present two stochastic optimization methods, simulated annealing and solution space smoothing, which use accurate delay and power models to construct buffered routing trees with considerations of buffer/wire sizing, routing obstacles and delay and power optimization. Experimental results show our methods can save much of the buffer area and the power dissipation with better solutions, and for the cases with pins ≤ 15, the runtime of solution space smoothing is tens of times faster.

  • A Fast Delay Computation for the Hybrid Structured Clock Network

    Yi ZOU  Yici CAI  Qiang ZHOU  Xianlong HONG  Sheldon X.-D. TAN  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E88-A No:7
      Page(s):
    1964-1970

    This paper presents a novel approach to reducing the complexity of the transient linear circuit analysis for a hybrid structured clock network. Topology reduction is first used to reduce the complexity of the circuits and a preconditioned Krylov-subspace iterative method is then used to perform the nodal analysis on the reduced circuits. By proper selection of the simulation time step and interval based on Elmore delays, the delay of the clock signal between the clock source and the sink node as well as the clock skews between the sink nodes can be computed efficiently and accurately. Our experimental results show that the proposed algorithm is two orders of magnitude faster than HSPICE without loss of accuracy and stability. The maximum error is within 0.4% of the exact delay time.