The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yici CAI(12hit)

1-12hit
  • Early Stage Power Supply Planning: A Heuristic Method for Codesign of Power/Ground Network and Floorplan

    Xiaoyi WANG  Jin SHI  Yici CAI  Xianlong HONG  

     
    PAPER-Physical Level Design

      Vol:
    E91-A No:12
      Page(s):
    3443-3450

    It's a trend to consider the power supply integrity at early stage to improve the design quality. Specifically, floorplanning process is modified to improve the power supply as well. In the modified floorplanning process, both the floorplan and power/ground (P/G) network are adjusted to search for optimal floorplan as well as the most robust power supply. In this paper, we propose a novel algorithm to carry out this modified floorplanning. A new analytical method is proposed to estimate the voltage drop while the floorplan is varying constantly. This fast analytical voltage drop estimating method is plugged into the modified floorplanner to speed up the whole floorplanning process. Compared with previous methods, our algorithm can search for the optimal floorplan with consideration of power supply integrity more efficiently and therefore leads to better results. Furthermore, this paper also proposes a novel heuristic method to optimize the topology of P/G network. This optimization algorithm could construct a more robust power supply system. Experimental results show the method can speedup the IR-drop aware floorplanning process by about 10 times and reduce the routing area of P/G network while maintaining the floorplan quality and power supply integrity.

  • Voltage Island Generation in Cell Based Dual-Vdd Design

    Yici CAI  Bin LIU  Qiang ZHOU  Xianlong HONG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E90-A No:1
      Page(s):
    267-273

    The voltage island style has been widely accepted as an effective way to design low power high performance chips. This paper proposes an automated voltage island generation flow in standard cell based designs. Two important objectives in voltage island designs are addressed in this flow: 1) reducing power dissipation under given performance constraints; 2) reducing implementation overheads, mainly layout overheads caused by cell clustering to form islands. The first objective is handled with timing and power driven netweighting and timing analysis in voltage assignment. For the second objective, we propose layout aware voltage assignment, i.e., voltage assignment during placement. We iteratively perform the following to adjustments: adjustment on voltage assignment to facilitate voltage island generation, and adjustment on cell locations to cluster cells in voltage islands. These iterations lead to a flow featured with tightly integrated voltage assignment and cell placement. Experimental results have demonstrated the advantages of our approach.

  • VLSI Floorplanning with Boundary Constraints Using Corner Block List Representation

    Yuchun MA  Xianlong HONG  Sheqin DONG  Yici CAI  Chung-Kuan CHENG  Jun GU  

     
    PAPER-Layout

      Vol:
    E84-A No:11
      Page(s):
    2697-2704

    Boundary Constraints of VLSI floorplanning require a set of blocks to be placed along the boundaries of the chip. Thus, this set of blocks can be adjacent to I/O pads for external communication. Furthermore, these blocks are kept away from the central area so that they do not form blockage for internal routing. In the paper, we devise an algorithm of VLSI floorplanning with boundary constraints using a Corner Block List (CBL) representation. We identify the necessary and sufficient conditions of the CBL representation for the boundary constraints. We design a linear time approach to scan the conditions and formulate a penalty function to punish the constraint violation. A simulated annealing process is adopted to optimize the floorplan. Experiments on MCNC benchmarks show promising results.

  • A Fast Delay Computation for the Hybrid Structured Clock Network

    Yi ZOU  Yici CAI  Qiang ZHOU  Xianlong HONG  Sheldon X.-D. TAN  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E88-A No:7
      Page(s):
    1964-1970

    This paper presents a novel approach to reducing the complexity of the transient linear circuit analysis for a hybrid structured clock network. Topology reduction is first used to reduce the complexity of the circuits and a preconditioned Krylov-subspace iterative method is then used to perform the nodal analysis on the reduced circuits. By proper selection of the simulation time step and interval based on Elmore delays, the delay of the clock signal between the clock source and the sink node as well as the clock skews between the sink nodes can be computed efficiently and accurately. Our experimental results show that the proposed algorithm is two orders of magnitude faster than HSPICE without loss of accuracy and stability. The maximum error is within 0.4% of the exact delay time.

  • A Novel Timing-Driven Global Routing Algorithm Considering Coupling Effects for High Performance Circuit Design

    Jingyu XU  Xianlong HONG  Tong JING  Yici CAI  Jun GU  

     
    PAPER-Place and Routing

      Vol:
    E86-A No:12
      Page(s):
    3158-3167

    As the CMOS technology enters the very deep submicron era, inter-wire coupling capacitance becomes the dominant part of load capacitance. The coupling effects have brought new challenges to routing algorithms on both delay estimation and optimization. In this paper, we propose a timing-driven global routing algorithm with consideration of coupling effects. Our two-phase algorithm based on timing-relax method includes a heuristic Steiner tree algorithm to guarantee the timing performance of the initial solution and an optimization algorithm based on coupling-effect-transference. Experimental results are given to demonstrate the efficiency and accuracy of the algorithm.

  • Navigating Register Placement for Low Power Clock Network Design

    Yongqiang LU  Chin-Ngai SZE  Xianlong HONG  Qiang ZHOU  Yici CAI  Liang HUANG  Jiang HU  

     
    PAPER-Floorplan and Placement

      Vol:
    E88-A No:12
      Page(s):
    3405-3411

    With VLSI design development, the increasingly severe power problem requests to minimize clock routing wirelength so that both power consumption and power supply noise can be alleviated. In contrast to most of traditional works that handle this problem only in clock routing, we propose to navigate standard cell register placement to locations that enable further less clock routing wirelength and power. To minimize adverse impacts to conventional cell placement goals such as signal net wirelength and critical path delay, the register placement is carried out in the context of a quadratic placement. The proposed technique is particularly effective for the recently popular prescribed skew clock routing. Experiments on benchmark circuits show encouraging results.

  • Logic and Layout Aware Level Converter Optimization for Multiple Supply Voltage

    Liangpeng GUO  Yici CAI  Qiang ZHOU  Xianlong HONG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:8
      Page(s):
    2084-2090

    Multiple supply voltage (MSV) is an effective scheme to achieve low power. Recent works in MSV are based on physical level and aim at reducing physical overheads, but all of them do not consider level converter, which is one of the most important issues in dual-vdd design. In this work, a logic and layout aware methodology and related algorithms combining voltage assignment and placement are proposed to minimize the number of level converters and to implement voltage islands with minimal physical overheads. Experimental results show that our approach uses much fewer level converters (reduced by 83.23% on average) and improves the power savings by 16% on average compared to the previous approach [1]. Furthermore, the methodology is able to produce feasible placement with a small impact to traditional placement goals.

  • Low Power Gated Clock Tree Driven Placement

    Weixiang SHEN  Yici CAI  Xianlong HONG  Jiang HU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:2
      Page(s):
    595-603

    As power consumption of the clock tree dominates over 40% of the total power in modern high performance VLSI designs, measures must be taken to keep it under control. One of the most effective methods is based on clock gating to shut off the clock when the modules are idle. However, previous works on gated clock tree power minimization are mostly focused on clock routing and the improvements are often limited by the given registers placement. The purpose of this work is to navigate the registers during placement to further reduce the clock tree power based on clock gating. Our method performs activity-aware register clustering that reduces the clock tree power not only by clumping the registers into a smaller area, but also by pulling the registers with the similar activity patterns closely to shut off the clock more time for the resultant subtrees. In order to reduce the impact of signal nets wirelength and power due to register clustering, we apply the timing and activity based net weighting in [14], which reduces the nets switching power by assigning a combination of activity and timing weights to the nets with higher switching rates or more critical timing. To tradeoff the power dissipated by the clock tree and the control signal, we extend the idea of local ungating in [6] and propose an algorithm of gate control signal optimization, which still sets the gate enable signal high if a register is active for a number of consecutive clock cycles. Experimental results on a set of MCNC benchmarks show that our approach is able to reduce the power and total wirelength of clock tree greatly with minimal overheads.

  • Dummy Fill Aware Buffer Insertion after Layer Assignment Based on an Effective Estimation Model

    Yanming JIA  Yici CAI  Xianlong HONG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:12
      Page(s):
    3783-3792

    This paper studies the impact of dummy fill for chemical mechanical polishing (CMP)-induced capacitance variation on buffer insertion based on a virtual CMP fill estimation model. Compared with existing methods, our algorithm is more feasible by performing buffer insertion not in post-process but during early physical design. Our contributions are threefold. First, we introduce an improved fast dummy fill amount estimation algorithm based on [4], and use some speedup techniques (tile merging, fill factor and amount assigning) for early estimation. Second, based on some reasonable assumptions, we present an optimum virtual dummy fill method to estimate dummy position and the effect on the interconnect capacitance. Then the dummy fill estimation model was verified by our experiments. Third, we use this model in early buffer insertion after layer assignment considering the effects of dummy fill. Experimental results verified the necessity of early dummy fill estimation and the validity of our algorithm. Buffer insertion considering dummy fill during early physical design is necessary and our algorithm is promising.

  • A Fast Decoupling Capacitor Budgeting Algorithm for Robust On-Chip Power Delivery

    Jingjing FU  Zuying LUO  Xianlong HONG  Yici CAI  Sheldon X.-D. TAN  Zhu PAN  

     
    PAPER-Physical Design

      Vol:
    E87-A No:12
      Page(s):
    3273-3280

    In this paper, we present an efficient method to budget on-chip decoupling capacitors (decaps) to optimize power delivery networks in an area efficient way. Our algorithm is based on an efficient gradient-based non-linear programming method for searching the solution. Our contributions are an efficient gradient computation method (time-domain merged adjoint network method) and a novel equivalent circuit modeling technique to speed up the optimization process. Experimental results demonstrate that the algorithm is capable of efficiently optimizing very large scale P/G networks.

  • Stochastic Interconnect Tree Construction Algorithm with Accurate Delay and Power Consideration

    Yibo WANG  Yici CAI  Xianlong HONG  Yi ZOU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E90-A No:5
      Page(s):
    1028-1037

    Buffer insertion plays a great role in modern global interconnect optimization. But too many buffers exhaust routing resources, and result in the rise of the power dissipation. Unfortunately, simplified delay models used by most of the present buffer insertion algorithms may introduce redundant buffers due to the delay estimation errors, whereas accurate delay models expand the solution space significantly, resulting in unacceptable runtime. Moreover, the power dissipation problem becomes a dominant factor in the state-of-the-art IC design. Not only transistor but also interconnect should be taken into consideration in the power calculation, which makes us have to use an accurate power model to calculate the total power dissipation. In this paper, we present two stochastic optimization methods, simulated annealing and solution space smoothing, which use accurate delay and power models to construct buffered routing trees with considerations of buffer/wire sizing, routing obstacles and delay and power optimization. Experimental results show our methods can save much of the buffer area and the power dissipation with better solutions, and for the cases with pins ≤ 15, the runtime of solution space smoothing is tens of times faster.

  • Crosstalk and Congestion Driven Layer Assignment Algorithm

    Bin LIU  Yici CAI  Qiang ZHOU  Xianlong HONG  

     
    PAPER-Circuit Theory

      Vol:
    E88-A No:6
      Page(s):
    1565-1572

    In VDSM era, crosstalk is becoming a more and more vital factor in high performance VLSI designs, making noise mitigation in early design stages necessary. In this paper, we propose an effective algorithm optimizing crosstalk under congestion constraint in the layer assignment stage. A new model for noise severity measurement is developed where wire length is used as a scale for the noise immunity, and both capacitive and inductive coupling between sensitive nets are considered. We also take shield insertion into account for further crosstalk mitigation. Experimental results show that our approach could efficiently reduce crosstalk noise without compromising congestion compared to the algorithm proposed in [1].