The search functionality is under construction.

Author Search Result

[Author] Yoichi YOSHIDA(2hit)

1-2hit
  • Analysis of Inductive Coupling and Design of Rectifier Circuit for Inter-Chip Wireless Power Link

    Yuxiang YUAN  Yoichi YOSHIDA  Tadahiro KURODA  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:2
      Page(s):
    164-171

    A wireless power link utilizing inductive coupling is developed between stacked chips. In this paper, we discuss inductor layout optimization and rectifier circuit design. The inductive-coupling power link is analyzed using simple equivalent circuit models. On the basis of the analytic models, the inductor size is minimized for the given required power on the receiver chip. Two kinds of full-wave rectifiers are discussed and compared. Various low-power circuit design techniques for rectifiers are employed to decrease the substrate leakage current, reduce the possibility of latch-up, and improve the power transmission efficiency and the high-frequency performance of the rectifier block. Test chips are fabricated in a 0.18 µm CMOS process. With a pair of 700700 µm2 on-chip inductors, the test chips achieve 10% peak efficiency and 36 mW power transmission. Compared with the previous work the received power is 13 times larger for the same inductor size .

  • 6 W/25 mm2 Wireless Power Transmission for Non-contact Wafer-Level Testing

    Andrzej RADECKI  Hayun CHUNG  Yoichi YOSHIDA  Noriyuki MIURA  Tsunaaki SHIDEI  Hiroki ISHIKURO  Tadahiro KURODA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    668-676

    Wafer-level testing is a well established solution for detecting manufacturing errors and removing non-functional devices early in the fabrication process. Recently this technique has been facing a number of challenges, resulting from increased complexity of devices under test, larger number and higher density of pads or bumps, application of mechanically fragile materials, such as low-k dielectrics, and ever developing packaging technologies. Most of these difficulties originate from the use of mechanical probes, as they limit testing speed, impose performance limitations and add reliability issues. Earlier work focused on relaxing these constraints by removing mechanical probes for data transmission and DC signal measurement and replacing them with non-contact interfaces. In this paper we extend this concept by adding a capability of transferring power wirelessly, enabling non-contact wafer-level testing. In addition to further improvements in the performance and reliability, this solution enables new testing scenarios such as probing wafers from their backside. The proposed system achieves 6 W/25 mm2 power transfer density over a distance of up to 0.32 mm, making it suitable for non-contact wafer-level testing of medium performance CMOS integrated circuits.