The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

7141-7160hit(42807hit)

  • Low Cost, High Performance of Coplanar Waveguide Fabricated by Screen Printing Technology Open Access

    Masahiro HORIBE  

     
    INVITED PAPER

      Vol:
    E99-C No:10
      Page(s):
    1094-1099

    This paper presents an innovative fabrication process for a planar circuits at millimeter-wave frequency. Screen printing technology provides low cost and high performance coplanar waveguides (CPW) lines in planar devices operated at millimeter-wave frequency up to 110GHz. Printed transmission lines provide low insertion losses of 0.30dB/mm at 110GHz and small return loss like as impedance standard lines. In the paper, Multiline Thru-Reflect-Line (TRL) calibration was also demonstrated by using the impedance standard substrates (ISS) fabricated by screen printing. Regarding calibration capability validation, verification devices were measured and compare the results to the result obtained by the TRL calibration using commercial ISS. The comparison results obtained by calibration of screen printing ISS are almost the same as results measured based on conventional ISS technology.

  • LAB-LRU: A Life-Aware Buffer Management Algorithm for NAND Flash Memory

    Liyu WANG  Lan CHEN  Xiaoran HAO  

     
    LETTER-Computer System

      Pubricized:
    2016/06/21
      Vol:
    E99-D No:10
      Page(s):
    2633-2637

    NAND flash memory has been widely used in storage systems. Aiming to design an efficient buffer policy for NAND flash memory, a life-aware buffer management algorithm named LAB-LRU is proposed, which manages the buffer by three LRU lists. A life value is defined for every page and the active pages with higher life value can stay longer in the buffer. The definition of life value considers the effect of access frequency, recency and the cost of flash read and write operations. A series of trace-driven simulations are carried out and the experimental results show that the proposed LAB-LRU algorithm outperforms the previous best-known algorithms significantly in terms of the buffer hit ratio, the numbers of flash write and read operations and overall runtime.

  • Topics Arising from the WRC-15 with Respect to Satellite-Related Agenda Items Open Access

    Nobuyuki KAWAI  Satoshi IMATA  

     
    INVITED PAPER

      Vol:
    E99-B No:10
      Page(s):
    2113-2120

    Along with remarkable advancement of radiocommunication services including satellite services, the radio-frequency spectrum and geostationary-satellite orbit are getting congested. WRC-15 was held in November 2015 to study and implement efficient use of those natural resources. There were a number of satellite-related agenda items associated with frequency allocation, new usages of satellite communications and satellite regulatory issues. This paper overviews the outcome from these agenda items of WRC-15 as well as the agenda items for the next WRC (i.e. the WRC-19).

  • A Fully Canonical Bandpass Filter Design Using Microstrip Transversal Resonator Array Configuration

    Masataka OHIRA  Toshiki KATO  Zhewang MA  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1122-1129

    This paper proposes a new and simple microstrip bandpass filter structure for the design of a fully canonical transversal array filter. The filter is constructed by the parallel arrangement of microstrip even- and odd-mode half-wavelength resonators. In this filter, transmission zeros (TZs) are not produced by cross couplings used in conventional filter designs, but by an intrinsic negative coupling of the odd-mode resonators having open ends with respect to the even-mode resonators with shorted ends. Thus, the control of the resonant frequency and the external Q factor of each resonator makes it possible to form both a specified passband and TZs. As an example, a fully canonical bandpass filter with 2-GHz center frequency, 6% bandwidth, and four TZs is synthesized with a coupling-matrix optimization, and its structural parameters are designed. The designed filter achieves a rapid roll-off and low-loss passband response, which can be confirmed numerically and experimentally.

  • Cooperative Path Selection Framework for Effective Data Gathering in UAV-Aided Wireless Sensor Networks

    Sotheara SAY  Mohamad Erick ERNAWAN  Shigeru SHIMAMOTO  

     
    PAPER

      Vol:
    E99-B No:10
      Page(s):
    2156-2167

    Sensor networks are often used to understand underlying phenomena that are reflected through sensing data. In real world applications, this understanding supports decision makers attempting to access a disaster area or monitor a certain event regularly and thus necessary actions can be triggered in response to the problems. Practitioners designing such systems must overcome difficulties due to the practical limitations of the data and the fidelity of a network condition. This paper explores the design of a network solution for the data acquisition domain with the goal of increasing the efficiency of data gathering efforts. An unmanned aerial vehicle (UAV) is introduced to address various real-world sensor network challenges such as limited resources, lack of real-time representative data, and mobility of a relay station. Towards this goal, we introduce a novel cooperative path selection framework to effectively collect data from multiple sensor sources. The framework consists of six main parts ranging from the system initialization to the UAV data acquisition. The UAV data acquisition is useful to increase situational awareness or used as inputs for data manipulation that support response efforts. We develop a system-based simulation that creates the representative sensor networks and uses the UAV for collecting data packets. Results using our proposed framework are analyzed and compared to existing approaches to show the efficiency of the scheme.

  • Spoken Term Detection Using SVM-Based Classifier Trained with Pre-Indexed Keywords

    Kentaro DOMOTO  Takehito UTSURO  Naoki SAWADA  Hiromitsu NISHIZAKI  

     
    PAPER-Spoken term detection

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2528-2538

    This study presents a two-stage spoken term detection (STD) method that uses the same STD engine twice and a support vector machine (SVM)-based classifier to verify detected terms from the STD engine's output. In a front-end process, the STD engine is used to pre-index target spoken documents from a keyword list built from an automatic speech recognition result. The STD result includes a set of keywords and their detection intervals (positions) in the spoken documents. For keywords having competitive intervals, we rank them based on the STD matching cost and select the one having the longest duration among competitive detections. The selected keywords are registered in the pre-index. They are then used to train an SVM-based classifier. In a query term search process, a query term is searched by the same STD engine, and the output candidates are verified by the SVM-based classifier. Our proposed two-stage STD method with pre-indexing was evaluated using the NTCIR-10 SpokenDoc-2 STD task and it drastically outperformed the traditional STD method based on dynamic time warping and a confusion network-based index.

  • A Broadband Circularly Polarized Waveguide Antenna Design for Low Cross-Polarization

    Ryoji YAMAUCHI  Takeshi FUKUSAKO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/04/19
      Vol:
    E99-B No:10
      Page(s):
    2187-2194

    An L-shaped probe with a surrounding aperture such as a waveguide can generate circular polarization (CP) waves. Circular waveguide antennas using an L-shaped probe have broadband characteristics both in axial ratio (AR) and in input impedance, however cross-polarization (XPOL) is easily generated due to its asymmetrical structure resulting in a radiation pattern that has narrow CP azimuth range. In this paper, design techniques to reduce the XPOL generated from a circular waveguide antenna using an L-shaped probe are proposed. As a result, XPOL is reduced by around 10 dB, and CP is radiated over a wide angle range of 120-150° covering frequencies from 7.35 to 9.75GHz.

  • FOREWORD Open Access

    Morio TOYOSHIMA  

     
    FOREWORD

      Vol:
    E99-B No:10
      Page(s):
    2112-2112
  • Mathematical Analysis of Secrecy Amplification in Key Infection

    Dae Hyun YUM  

     
    LETTER-Information Network

      Pubricized:
    2016/03/28
      Vol:
    E99-D No:9
      Page(s):
    2390-2394

    Key infection is a lightweight key-distribution protocol for partially compromised wireless sensor networks, where sensor nodes send cryptographic keys in the clear. As the adversary is assumed to be present partially at the deployment stage, some keys are eavesdropped but others remain secret. To enhance the security of key infection, secrecy amplification combines keys propagated along different paths. Two neighbor nodes W1 and W2 can use another node W3 to update their key. If W3 is outside of the eavesdropping region of the adversary, the updated key is guaranteed to be secure. To date, the effectiveness of secrecy amplification has been demonstrated only by simulation. In this article, we present the first mathematical analysis of secrecy amplification. Our result shows that the effectiveness of secrecy amplification increases as the distance between the two neighbor nodes decreases.

  • A New Marching-on-in-Order Based 2-D Unconditionally Stable FDTD Method

    Meng YANG  Yuehu TAN  Erbing LI  Cong MA  Yechao YOU  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E99-C No:9
      Page(s):
    1080-1083

    The unconditionally stable (US) Laguerre-FDTD method has recently attracted significant attention for its high efficiency and accuracy in modeling fine structures. One of the most attractive characteristics of this method is its marching-on-in-order solution scheme. This paper presents Hermite-Rodriguez functions as another type of orthogonal basis to implement a new 2-D US solution scheme.

  • Mobile Agent-Based Information Dissemination Scheme Using Location Information in Vehicular Ad Hoc Networks

    Takeshi HASHIMOTO  Junich AOKI  Tomoyuki OHTA  Yoshiaki KAKUDA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    1958-1966

    A vehicular ad hoc network (VANET) consists of vehicles (mobile nodes) and road side units which are equipped with the wireless devices such as wireless LANs. Mobile nodes exchange information messages with each other so that VANETs are configured in a self-organized manner. As one of network service scenarios in VANETs, there is a network service to provide the parking spaces in the city central to vehicles (mobile nodes). In this scenario, the road side units (source nodes) which are deployed at the parking spaces periodically disseminate the number of available parking spaces to mobile nodes. Therefore, in this paper, we propose a mobile agent-based information dissemination scheme using location information of mobile nodes and source nodes in the VANET environment. In addition, we conduct simulation experiments in the VANET environment to evaluate the proposed mobile agent-based information dissemination scheme. We confirmed that it could disseminate information messages with lower overhead because mobile agents migrate among mobile nodes by using the location information.

  • Measurement of Wireless LAN Characteristics in Sewer Pipes for Sewer Inspection Systems Using Drifting Wireless Sensor Nodes

    Taiki NAGASHIMA  Yudai TANAKA  Susumu ISHIHARA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    1989-1997

    Deterioration of sewer pipes is one of very important problems in Japan. Sewer inspections have been carried out mainly by visual check or wired remote robots with a camera. However, such inspection schemes involve high labor and/or monetary cost. Sewer inspection with boat-type video cameras or unwired robots takes a long time to check the result of the inspection because video data are obtained after the equipment is retrieved from the pipe. To realize low cost, safe and quick inspection of sewer pipes, we have proposed a sewer inspection system using drifting wireless sensor nodes. Water, soil, and the narrow space in the pipe make the long-range and high throughput wireless radio communication difficult. Therefore, we have to identify suitable radio frequency and antenna configuration based on wireless communication characteristics in sewer pipes. If the frequency is higher, the Fresnel zone, the needed space for the line of sight is small, but the path loss in free space is large. On the other hand, if the frequency is lower, the size of the Fresnel zone is large, but the path loss in free space is small. We conducted wireless communication experiments using 920MHz, 2.4GHz, and 5GHz band off-the-shelf devices in an experimental underground pipe. The measurement results show that the wireless communication range of 5GHz (IEEE 802.11a) is over 8m in a 200mm-diameter pipe and is longer than 920MHz (ARIB STD-T108), 2.4GHz (IEEE 802.11g, IEEE 802.15.4) band at their maximum transmission power. In addition, we confirmed that devices that use IEEE 802.11a and 54Mbps bit rate can transmit about 43MB data while they are in the communication range of an AP and drift at 1m/s in a 200mm-diameter pipe, and it is bigger than one of devices that use other bit rate.

  • Deforming Pyramid: Multiscale Image Representation Using Pixel Deformation and Filters for Non-Equispaced Signals

    Saho YAGYU  Akie SAKIYAMA  Yuichi TANAKA  

     
    PAPER

      Vol:
    E99-A No:9
      Page(s):
    1646-1654

    We propose an edge-preserving multiscale image decomposition method using filters for non-equispaced signals. It is inspired by the domain transform, which is a high-speed edge-preserving smoothing method, and it can be used in many image processing applications. One of the disadvantages of the domain transform is sensitivity to noise. Even though the proposed method is based on non-equispaced filters similar to the domain transform, it is robust to noise since it employs a multiscale decomposition. It uses the Laplacian pyramid scheme to decompose an input signal into the piecewise-smooth components and detail components. We design the filters by using an optimization based on edge-preserving smoothing with a conversion of signal distances and filters taking into account the distances between signal intervals. In addition, we also propose construction methods of filters for non-equispaced signals by using arbitrary continuous filters or graph spectral filters in order that various filters can be accommodated by the proposed method. As expected, we find that, similar to state-of-the-art edge-preserving smoothing techniques, including the domain transform, our approach can be used in many applications. We evaluated its effectiveness in edge-preserving smoothing of noise-free and noisy images, detail enhancement, pencil drawing, and stylization.

  • Superclass Extraction Problem of Workflow Nets and a Solution Procedure Based on Process Mining Technique

    Shingo YAMAGUCHI  

     
    PAPER-Mathematical Systems Science

      Vol:
    E99-A No:9
      Page(s):
    1700-1707

    An organization may have two or more similar workflows as a result of workflow evolutions or mergers and acquisitions. We should grasp the common behavior of those workflows to consolidate the management of them and/or to do business process reengineering. Workflows can be modeled as a particular class of Petri nets, called workflow nets. The common behavior of two or more workflow nets can be represented as a superclass under the behavioral inheritance of those workflow nets. In this paper, we tackled a problem of extracting a superclass from two workflow nets, named Superclass Extraction problem. We first gave a definition of the problem. Next we proposed a procedure to solve the problem on the basis of process mining technique. Then we gave an application of the proposed procedure.

  • Sparse-Graph Codes and Peeling Decoder for Compressed Sensing

    Weijun ZENG  Huali WANG  Xiaofu WU  Hui TIAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:9
      Page(s):
    1712-1716

    In this paper, we propose a compressed sensing scheme using sparse-graph codes and peeling decoder (SGPD). By using a mix method for construction of sensing matrices proposed by Pawar and Ramchandran, it generates local sensing matrices and implements sensing and signal recovery in an adaptive manner. Then, we show how to optimize the construction of local sensing matrices using the theory of sparse-graph codes. Like the existing compressed sensing schemes based on sparse-graph codes with “good” degree profile, SGPD requires only O(k) measurements to recover a k-sparse signal of dimension n in the noiseless setting. In the presence of noise, SGPD performs better than the existing compressed sensing schemes based on sparse-graph codes, still with a similar implementation cost. Furthermore, the average variable node degree for sensing matrices is empirically minimized for SGPD among various existing CS schemes, which can reduce the sensing computational complexity.

  • Infinite-Horizon Team-Optimal Incentive Stackelberg Games for Linear Stochastic Systems

    Hiroaki MUKAIDANI  

     
    LETTER-Systems and Control

      Vol:
    E99-A No:9
      Page(s):
    1721-1725

    In this paper, an infinite-horizon team-optimal incentive Stackelberg strategy is investigated for a class of stochastic linear systems with many non-cooperative leaders and one follower. An incentive structure is adopted which allows for the leader's team-optimal Nash solution. It is shown that the incentive strategy set can be obtained by solving the cross-coupled stochastic algebraic Riccati equations (CCSAREs). In order to demonstrate the effectiveness of the proposed strategy, a numerical example is solved.

  • Optimal Gaussian Weight Predictor and Sorting Using Genetic Algorithm for Reversible Watermarking Based on PEE and HS

    Chaiyaporn PANYINDEE  Chuchart PINTAVIROOJ  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/06/03
      Vol:
    E99-D No:9
      Page(s):
    2306-2319

    This paper introduces a reversible watermarking algorithm that exploits an adaptable predictor and sorting parameter customized for each image and each payload. Our proposed method relies on a well-known prediction-error expansion (PEE) technique. Using small PE values and a harmonious PE sorting parameter greatly decreases image distortion. In order to exploit adaptable tools, Gaussian weight predictor and expanded variance mean (EVM) are used as parameters in this work. A genetic algorithm is also introduced to optimize all parameters and produce the best results possible. Our results show an improvement in image quality when compared with previous conventional works.

  • Bayesian Exponential Inverse Document Frequency and Region-of-Interest Effect for Enhancing Instance Search Accuracy

    Masaya MURATA  Hidehisa NAGANO  Kaoru HIRAMATSU  Kunio KASHINO  Shin'ichi SATOH  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/06/03
      Vol:
    E99-D No:9
      Page(s):
    2320-2331

    In this paper, we first analyze the discriminative power in the Best Match (BM) 25 formula and provide its calculation method from the Bayesian point of view. The resulting, derived discriminative power is quite similar to the exponential inverse document frequency (EIDF) that we have previously proposed [1] but retains more preferable theoretical advantages. In our previous paper [1], we proposed the EIDF in the framework of the probabilistic information retrieval (IR) method BM25 to address the instance search task, which is a specific object search for videos using an image query. Although the effectiveness of our EIDF was experimentally demonstrated, we did not consider its theoretical justification and interpretation. We also did not describe the use of region-of-interest (ROI) information, which is supposed to be input to the instance search system together with the original image query showing the instance. Therefore, here, we justify the EIDF by calculating the discriminative power in the BM25 from the Bayesian viewpoint. We also investigate the effect of the ROI information for improving the instance search accuracy and propose two search methods incorporating the ROI effect into the BM25 video ranking function. We validated the proposed methods through a series of experiments using the TREC Video Retrieval Evaluation instance search task dataset.

  • Robust Non-Parametric Template Matching with Local Rigidity Constraints

    Chao ZHANG  Haitian SUN  Takuya AKASHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/06/03
      Vol:
    E99-D No:9
      Page(s):
    2332-2340

    In this paper, we address the problem of non-parametric template matching which does not assume any specific deformation models. In real-world matching scenarios, deformation between a template and a matching result usually appears to be non-rigid and non-linear. We propose a novel approach called local rigidity constraints (LRC). LRC is built based on an assumption that the local rigidity, which is referred to as structural persistence between image patches, can help the algorithm to achieve better performance. A spatial relation test is proposed to weight the rigidity between two image patches. When estimating visual similarity under an unconstrained environment, high-level similarity (e.g. with complex geometry transformations) can then be estimated by investigating the number of LRC. In the searching step, exhaustive matching is possible because of the simplicity of the algorithm. Global maximum is given out as the final matching result. To evaluate our method, we carry out a comprehensive comparison on a publicly available benchmark and show that our method can outperform the state-of-the-art method.

  • Robust Projective Template Matching

    Chao ZHANG  Takuya AKASHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/06/08
      Vol:
    E99-D No:9
      Page(s):
    2341-2350

    In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope.

7141-7160hit(42807hit)