The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ACLR(4hit)

1-4hit
  • A 24-30GHz Power Amplifier with >20-dBm Psat and <0.1-dB AM-AM Distortion for 5G Applications in 130-nm SiGe BiCMOS Open Access

    Chihiro KAMIDAKI  Yuma OKUYAMA  Tatsuo KUBO  Wooram LEE  Caglar OZDAG  Bodhisatwa SADHU  Yo YAMAGUCHI  Ning GUAN  

     
    INVITED PAPER

      Pubricized:
    2023/05/12
      Vol:
    E106-C No:11
      Page(s):
    625-634

    This paper presents a power amplifier (PA) designed as a part of a transceiver front-end fabricated in 130-nm SiGe BiCMOS. The PA shares its output antenna port with a low noise amplifier using a low-loss transmission/reception switch. The output matching network of the PA is designed to provide high output power, low AM-AM distortion, and uniform performance over frequencies in the range of 24.25-29.5GHz. Measurements of the front-end in TX mode demonstrate peak S21 of 30.3dB at 26.7GHz, S21 3-dB bandwidth of 9.8GHz from 22.2to 32.0GHz, and saturated output power (Psat) above 20dBm with power-added efficiency (PAE) above 22% from 24 to 30GHz. For a 64-QAM 400MHz bandwidth orthogonal frequency division multiplexing (OFDM) signal, -25dBc error vector magnitude (EVM) is measured at an average output power of 12.3dBm and average PAE of 8.8%. The PA achieves a competitive ITRS FoM of 92.9.

  • Distortion Analysis of RF Power Amplifier Using Probability Density of Input Signal and AM-AM Characteristics

    Satoshi TANAKA  

     
    PAPER

      Pubricized:
    2022/05/11
      Vol:
    E105-A No:11
      Page(s):
    1436-1442

    When confirming the ACLR (adjacent channel leakage power ratio), which are representative indicators of distortion in the design of PA (power amplifier), it is well known how to calculate the AM-AM/PM characteristics of PA, input time series data of modulated signals, and analyze the output by Fourier analysis. In 5G (5th generation) mobile phones, not only QPSK (quadrature phase shift keying) modulation but also 16QAM (quadrature modulation), 64QAM, and 256QAM are becoming more multivalued as modulation signals. In addition, the modulation band may exceed 100MHz, and the amount of time series data increases, and the increase in calculation time becomes a problem. In order to shorten the calculation time, calculating the total amount of distortion generated by PA from the probability density of the modulation signal and the AM (amplitude modulation)-AM/PM (phase modulation) characteristics of PA is considered. For the AM-AM characteristics of PA, in this paper, IMD3 (inter modulation distortion 3) obtained from probability density and IMD3 by Fourier analysis, which are often used so long, are compared. As a result, it was confirmed that the result of probability density analysis is similar to that of Fourier analysis, when the nonlinearity is somewhat small. In addition, the agreement between the proposed method and the conventional method was confirmed with an error of about 2.0dB of ACLR using the modulation waves with a bandwidth of 5MHz, RB (resource block) being 25, and QPSK modulation.

  • Throughput/ACLR Performance of CF-Based Adaptive PAPR Reduction Method for Eigenmode MIMO-OFDM Signals with AMC

    Shoki INOUE  Teruo KAWAMURA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:9
      Page(s):
    2293-2300

    This paper proposes an enhancement to a previously reported adaptive peak-to-average power ratio (PAPR) reduction method based on clipping and filtering (CF) for eigenmode multiple-input multiple-output (MIMO) — orthogonal frequency division multiplexing (OFDM) signals. We enhance the method to accommodate the case with adaptive modulation and channel coding (AMC). Since the PAPR reduction process degrades the signal-to-interference and noise power ratio (SINR), the AMC should take into account this degradation before PAPR reduction to select accurately the modulation scheme and coding rate (MCS) for each spatial stream. We use the lookup table-based prediction of SINR after PAPR reduction, in which the interference caused by the PAPR reduction is obtained as a function of the stream index, frequency block index, clipping threshold for PAPR reduction, and input backoff (IBO) of the power amplifier. Simulation results show that the proposed PAPR reduction method increases the average throughput compared to the conventional CF method for a given adjacent channel leakage power ratio (ACLR) when we assume practical AMC.

  • Influence of Frequency Characteristics of RF Circuits in Digital Predistortion Type Linearizer System on Adjacent Channel Leakage Ratio for W-CDMA Power Amplifier

    Takeshi TAKANO  Toru MANIWA  Yasuyuki OISHI  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    324-329

    In recent years, digital predistortion linearizers have been used in power amplifiers for mobile communications because they are simpler and provide higher power efficiency than conventional feedforward systems. However, in systems that cover a wider frequency band, it is impossible to disregard the frequency characteristics of their various parameters since the degradation that can result causes a decline in output power efficiency which is the most important property of a power amplifier. To date, no detailed studies have been carried out on predistortion compensation systems. Thus, we focused our research on these systems and in this paper we report the simulation and experimental results we obtained for clarifying these effects. In our experiments, we used a W-CDMA power amplifier to determine how much the distortion compensation effect is degraded by the frequency characteristics of analog RF circuits. The results of experiments to determine the relationship between the ACLR (Adjacent Channel Leakage power Ratio) and power efficiency are also reported.