The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BER(1216hit)

461-480hit(1216hit)

  • Estimating Number of People Using Calibrated Monocular Camera Based on Geometrical Analysis of Surface Area

    Hiroyuki ARAI  Isao MIYAGAWA  Hideki KOIKE  Miki HASEYAMA  

     
    PAPER-Image

      Vol:
    E92-A No:8
      Page(s):
    1932-1938

    We propose a novel technique for estimating the number of people in a video sequence; it has the advantages of being stable even in crowded situations and needing no ground-truth data. By analyzing the geometrical relationships between image pixels and their intersection volumes in the real world quantitatively, a foreground image directly indicates the number of people. Because foreground detection is possible even in crowded situations, the proposed method can be applied in such situations. Moreover, it can estimate the number of people in an a priori manner, so it needs no ground-truth data unlike existing feature-based estimation techniques. Experiments show the validity of the proposed method.

  • A Fast (k,L,n)-Threshold Ramp Secret Sharing Scheme

    Jun KURIHARA  Shinsaku KIYOMOTO  Kazuhide FUKUSHIMA  Toshiaki TANAKA  

     
    PAPER-Theory

      Vol:
    E92-A No:8
      Page(s):
    1808-1821

    Shamir's (k,n)-threshold secret sharing scheme (threshold scheme) has two problems: a heavy computational cost is required to make shares and recover the secret, and a large storage capacity is needed to retain all the shares. As a solution to the heavy computational cost problem, several fast threshold schemes have been proposed. On the other hand, threshold ramp secret sharing schemes (ramp scheme) have been proposed in order to reduce each bit-size of shares in Shamir's scheme. However, there is no fast ramp scheme which has both low computational cost and low storage requirements. This paper proposes a new (k,L,n)-threshold ramp secret sharing scheme which uses just EXCLUSIVE-OR(XOR) operations to make shares and recover the secret at a low computational cost. Moreover, by proving that the fast (k,n)-threshold scheme in conjunction with a method to reduce the number of random numbers is an ideal secret sharing scheme, we show that our fast ramp scheme is able to reduce each bit-size of shares by allowing some degradation of security similar to the existing ramp schemes based on Shamir's threshold scheme.

  • Search Control Algorithm Based on Random Step Size Hill-Climbing Method for Adaptive PMD Compensation

    Ken TANIZAWA  Akira HIROSE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:8
      Page(s):
    2584-2590

    Adaptive polarization mode dispersion (PMD) compensation is required for the speed-up and advancement of the present optical communications. The combination of a tunable PMD compensator and its adaptive control method achieves adaptive PMD compensation. In this paper, we report an effective search control algorithm for the feedback control of the PMD compensator. The algorithm is based on the hill-climbing method. However, the step size changes randomly to prevent the convergence from being trapped at a local maximum or a flat, unlike the conventional hill-climbing method. The randomness depends on the Gaussian probability density functions. We conducted transmission simulations at 160 Gb/s and the results show that the proposed method provides more optimal compensator control than the conventional hill-climbing method.

  • Bucket Sieving

    Kazumaro AOKI  Hiroki UEDA  

     
    PAPER-Theory

      Vol:
    E92-A No:8
      Page(s):
    1845-1850

    This paper proposes a new sieving algorithm that employs a bucket sort as a part of a factoring algorithm such as the number field sieve. The sieving step requires an enormous number of memory updates; however, these updates usually cause cache hit misses. The proposed algorithm significantly reduces the number of cache hit misses when the size of the sieving region is roughly less than the square of the cache size, and the memory updates are several times faster than the straightforward implementation according to the PC experiments.

  • Optimal Number of Active Users for Minimizing Average Data Delivery Delay in People-Centric Urban Sensing

    ShanGuo QUAN  YoungYong KIM  

     
    LETTER-Networks

      Vol:
    E92-D No:7
      Page(s):
    1466-1469

    We present a numerical analysis of the optimal number of active mobile users for minimizing average data delivery delay in intelligent people-centric urban sensing, in which context-aware mobile devices act as sensor-data carriers and sensor nodes act as data accumulators within CDMA cellular networks. In the analysis, we compute the optimal number of mobile users for different environmental conditions and then investigate the minimum average data delivery delay for this optimal number of mobile users.

  • A Cyber-Attack Detection Model Based on Multivariate Analyses

    Yuto SAKAI  Koichiro RINSAKA  Tadashi DOHI  

     
    PAPER

      Vol:
    E92-A No:7
      Page(s):
    1585-1592

    In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.

  • Simple Model for Estimating Birefringence of LPFG Using Photoelastic Effect

    Tetsuro YABU  Hidenori TANAKA  Masaharu OHASHI  

     
    BRIEF PAPER-Optoelectronics

      Vol:
    E92-C No:6
      Page(s):
    887-889

    The polarization dependence of the resonance wavelength of long period fiber gratings (LPFGs) that employ the photoelastic effect is investigated based on a simple model. The proposed model for estimating the birefringence of these LPFGs provides a good explanation of the experimental results.

  • Applicability of Large Effective Area PCF to DRA Transmission

    Chisato FUKAI  Kazuhide NAKAJIMA  Takashi MATSUI  

     
    LETTER-Optical Fiber for Communications

      Vol:
    E92-B No:6
      Page(s):
    2251-2253

    We describe the applicability of photonic crystal fiber (PCF) with an enlarged effective area Aeff to a distributed Raman amplification (DRA) transmission. We investigate the DRA transmission performance numerically over a large Aeff PCF taking account of the signal-to-noise ratio (SNR) improvement RSNR in the S, C, and L bands. We show that an RSNR of 3 dB can be expected by utilizing DRA with a maximum pump power of 500 mW when the Aeff of the PCF is 230 µm2.

  • Precoding Technique for Minimizing BER of MIMO-OFDM System Employing MLD under Multicell Co-channel Interference

    Boonsarn PITAKDUMRONGKIJA  Kazuhiko FUKAWA  Satoshi SUYAMA  Hiroshi SUZUKI  Atsuo UMI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1573-1581

    This paper proposes a MIMO-OFDM precoder that can minimize a BER upper bound of the maximum likelihood detector (MLD) under a non-cooperative downlink multicell co-channel interference (CCI) environment. Since there is no cooperation among base stations (BSs), it is assumed that information on the interference can be estimated at a mobile station (MS) and then fed back to the desired BS for the precoder. The proposed scheme controls its precoding parameters under a transmit power constraint so as to minimize the BER upper bound, which is derived from the pairwise error probability (PEP) averaged with respect to CCI plus noise. Computer simulations demonstrate that the proposed precoder can effectively improve BER performance of cell edge users and is superior in terms of BER to the eigenmode and the minimum mean squared error (MMSE) precoded transmissions which aim to maximize the channel capacity and to minimize MSE, respectively.

  • MIMO Channel Matrix Condition Number Estimation and Threshold Selection for Combined K-Best Sphere Decoders

    Sandra ROGER  Alberto GONZALEZ  Vicenc ALMENAR  Antonio M. VIDAL  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:4
      Page(s):
    1380-1383

    It is known that MIMO channel matrix condition number influences detectors performance. Several authors have proposed combined decoders, mainly suboptimal, to cope with this fact. These combined algorithms require an estimation of the MIMO channel matrix condition number and a selection of a suitable threshold condition number. This letter presents practical algorithms to carry out the referred tasks and shows their performance in practice.

  • Impact of GVD on the Performance of 2-D WH/TS OCDMA Systems Using Heterodyne Detection Receiver

    Ngoc T. DANG  Anh T. PHAM  Zixue CHENG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E92-A No:4
      Page(s):
    1182-1191

    In this paper, a novel model of Gaussian pulse propagation in optical fiber is proposed to comprehensively analyze the impact of Group Velocity Dispersion (GVD) on the performance of two-dimensional wavelength hopping/time spreading optical code division multiple access (2-D WH/TS OCDMA) systems. In addition, many noise and interferences, including multiple access interference (MAI), optical beating interference (OBI), and receiver's noise are included in the analysis. Besides, we propose to use the heterodyne detection receiver so that the receiver's sensitivity can be improved. Analytical results show that, under the impact of GVD, the number of supportable users is extremely decreased and the maximum transmission length (i.e. the length at which BER 10-9 can be maintained) is remarkably shortened in the case of normal single mode fiber (ITU-T G.652) is used. The main factor that limits the system performance is time skewing. In addition, we show how the impact of GVD is relieved by dispersion-shifted fiber (ITU-T G.653). For example, a system with 321 Gbit/s users can achieve a maximum transmission length of 111 km when transmitted optical power per bit is -5 dBm.

  • New Bounds on the Feedforward Design of Optical Output Buffer Multiplexers and Switches

    Xiaoliang WANG  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Switching for Communications

      Vol:
    E92-B No:4
      Page(s):
    1183-1190

    We focus on non-conflicting construction of an optical multistage feedforward network to emulate the N-to-1 output buffer multiplexer by using switched fiber delay line (SDL). In [1], Y.T. Chen et al. presented a sufficient condition (an upper bound) for the number of delay lines required for such a multiplexer with variable length bursts. In this paper, we first give an improved upper bound. Then we develop a framework to construct an arrival case of bursts which can be used to achieve a necessary condition (a lower bound). These results are further extended to the feedforward construction of N-to-N output buffer switch. Through simulation and performance comparison, we find that the new bounds can significantly decrease the hardware cost for constructing both the feedforward SDL-based multiplexer and output buffer switch while still provide the same performance as that of the old ones.

  • BER Performance of Downlink MC-CDMA with ORC in Nakagami-m Fading Channel

    Yusung LEE  Namshik KIM  Hyuncheol PARK  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E92-B No:4
      Page(s):
    1349-1352

    In this letter, we derive an exact bit error rate (BER) expression for downlink multi-carrier code division multiple access (MC-CDMA) systems with orthogonal restoring combining (ORC) in Nakagami-m fading channel. A simple approximated expression is also provided. For uncoded and coded MC-CDMA systems, the BER expressions are calculated based on the moment generating function (MGF) of the combined fading random variable. The derived analytic expressions are verified by simulation results.

  • An Efficient Multicast Forwarding Method for Optical Bursts under Restricted Number of Burst Replicas

    Nagao OGINO  Hajime NAKAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:3
      Page(s):
    828-837

    Optical burst switching (OBS) is a promising approach for the realization of future flexible high-speed optical networks. In particular, a multicast forwarding method for optical bursts is important if an efficient high-speed grid computing network is to be realized. In OBS networks, the number of burst replicas generated at each node is strongly restricted due to optical power impairment of multicast bursts. Moreover, unrestricted replication of multicast bursts at each OBS node may not be advantageous because an increase in the number of multicast bursts within the network causes more frequent deflection forwarding of both multicast and unicast bursts. This paper proposes an efficient hop-by-hop multicast forwarding method for optical bursts, where idle output ports are selected based on scores simply calculated using a routing table that each OBS node holds. This method can mitigate increases in loss rate and transfer delay of multicast bursts, even if the number of burst replicas generated at each OBS node is strongly restricted. Moreover, this method can efficiently mitigate an increase in the number of multicast bursts within the network by avoiding unnecessary replication of multicast bursts at each OBS node. Simulation results show that the proposed method can actually mitigate degradation of the loss rate and transfer delay for multicast bursts under the restricted number of burst replicas at each OBS node. Moreover, when the arrival rate of multicast bursts is large relative to that of unicast bursts, the proposed method is able to improve the loss rates of both multicast and unicast bursts by switching the forwarding method for the multicast bursts to the simple unicast forwarding method without burst replication.

  • Asymmetric Fragile Watermarking Using a Number Theoretic Transform

    Hideaki TAMORI  Tsuyoshi YAMAMOTO  

     
    LETTER

      Vol:
    E92-A No:3
      Page(s):
    836-838

    We propose an asymmetric fragile watermarking technique that uses a number theoretic transform (NTT). Signature data is extracted from a watermarked image by determining correlation functions that are computed using the NTT. The effectiveness of the proposed method is evaluated by simulated detection of altering.

  • A Decentralized Multi-Group Key Management Scheme

    Junbeom HUR  Hyunsoo YOON  

     
    LETTER-Network Management/Operation

      Vol:
    E92-B No:2
      Page(s):
    632-635

    Scalability is one of the most important requirements for secure multicast in a multi-group environment. In this study, we propose a decentralized multi-group key management scheme that allows each multicast group sender to control the access to its group communication independently. Scalability is enhanced by local rekeying and inter-working among different subgroups. The group key secrecy and backward/forward secrecy are also guaranteed.

  • On the Non-existance of Rotation-Symmetric von Neumann Neighbor Number-Conserving Cellular Automata of Which the State Number is Less than Four

    Naonori TANIMOTO  Katsunobu IMAI  Chuzo IWAMOTO  Kenichi MORITA  

     
    LETTER

      Vol:
    E92-D No:2
      Page(s):
    255-257

    A number-conserving cellular automaton (NCCA) is a cellular automaton such that all states of cells are represented by integers and the total number of its configuration is conserved throughout its computing process. In constrast to normal cellular automata, there are infinitely many assignments of states for NCCAs with a constant state number. As for von Neumann neighbor(radius one) NCCAs with rotation-symmetry, a local function can be represented by summation of four binary functions. In this paper, we show that the minimum size of state set of rotation-symmetric von Neumann neighbor NCCA is 5 by using this representation.

  • Simple Remarks on Carmichael Numbers

    Shigenori UCHIYAMA  

     
    LETTER-Cryptography and Information Security

      Vol:
    E92-A No:1
      Page(s):
    326-328

    An odd composite number n for which an-1 ≡ 1 (mod n) for all integers a coprime to n is called a Carmichael number. This paper shows that some class of Carmichael numbers which have relatively large prime factors can be recognized in deterministic polynomial time under the assumption of the Extended Riemann Hypothesis (ERH). Also some related problems are discussed.

  • Asymptotic Analysis of the Light Propagation in a Random Waveguide System

    Akira KOMIYAMA  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    85-91

    The asymptotic behaviour of the light power at large distance in a random waveguide system with a short correlation length and a mathematical mechanism of the asymptotic behaviour are clarified. The discussion is based on the coupled mode theory. First, for the light propagation in an ordered waveguide system a new description in terms of the light power is presented. A solution of the integro-differential equation describing the light power is expressed as a contour integral in the Laplace transform domain. Singularities of the integrand are branch points and the branch cut integral determines the asymptotic behaviour of the solution. The light power decreases in inverse proportion to the distance. Secondly the description is extended to the case of a random waveguide system. The differential equation of the recurrence type describing the incoherent power is reduced to the integro-differential equation and it is shown that the kernel is the product of the kernel for an ordered system and the damping term. The equation is solved by using the same procedure as that for an ordered system and a contour integral representation of the solution is obtained. Singularities of the integrand are poles and branch points. The poles arise from the damping term of the kernel and the residues of the poles determine the asymptotic behaviour of the solution. The incoherent power decreases in inverse proportion to the square root of the distance.

  • On Some Properties of M-Ary Sidel'nikov Sequences

    Jung-Soo CHUNG  Young-Sik KIM  Tae-Hyung LIM  Jong-Seon NO  Habong CHUNG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E92-A No:1
      Page(s):
    342-345

    In this letter, we enumerate the number of cyclically inequivalent M-ary Sidel'nikov sequences of given length as well as the number of distinct autocorrelation distributions that they can have, while we change the primitive element for generating the sequence.

461-480hit(1216hit)