The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BGS(5hit)

1-5hit
  • Adaptive Block-Propagative Background Subtraction Method for UHDTV Foreground Detection

    Axel BEAUGENDRE  Satoshi GOTO  

     
    PAPER-Image

      Vol:
    E98-A No:11
      Page(s):
    2307-2314

    This paper presents an Adapting Block-Propagative Background Subtraction (ABPBGS) designed for Ultra High Definition Television (UHDTV) foreground detection. The main idea is to detect block after block along the objects in order to skip all areas of the image in which there is no moving object. This is particularly interesting for UHDTV when the objects of interest could represent not even 0.1% of the total area. From a seed block which is determined in a previous iteration, the detection will spread along an object as long as it detects a part of that object. A block history map guaranties that each block is processed only once. Moreover, only small blocks are loaded and processed, thus saving computational time and memory usage. The process of each block is independent enough to be easily parallelized. Compared to 9 state-of-the-art works, the ABPBGS achieved the best results with an average global quality score of 0.57 (1 being the maximum) on a dataset of 4K and 8K UHDTV sequences developed for this work. None of the state-of-the-art methods could process 4K videos in reasonable time while the ABPBGS has shown an average speed of 5.18fps. In comparison, 5 of the 9 state-of-the-art methods performed slower on 270p down-scale version of the same videos. The experiments have also shown that for the process an 8K UHDTV video the ABPBGS can divide the memory required by about 24 for a total of 450MB.

  • Experimental Study on Impedance Matching Recovery of a UHF RFID Tag Antenna on a High Impedance Surface by Parasite Elements

    Takayoshi KONISHI  Atsushi SANADA  Hiroshi KUBO  Yoshitaka HORI  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1643-1651

    In this paper, effects of the parasite elements on an antenna impedance of a UHF RFID tag put on a high impedance surface (HIS) are experimentally studied in detail. It is shown that small parasite elements on a mushroom HIS structure can help to recover a mismatch of the impedance and this impedance recovery is brought by an in-phase frequency shift of the HIS due to a mutual coupling between the HIS and the parasite elements. The technique is applied to a commercial 953 MHz band RFID tag inlet antenna on a 53-cell HIS with the total dimension of 125751.5 mm3 and it is demonstrated that the impedance mismatch is successfully recovered and the tag operates with a reading range of 3 m even on a 2003002 mm3 aluminum plate.

  • Impact of GVD on the Performance of 2-D WH/TS OCDMA Systems Using Heterodyne Detection Receiver

    Ngoc T. DANG  Anh T. PHAM  Zixue CHENG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E92-A No:4
      Page(s):
    1182-1191

    In this paper, a novel model of Gaussian pulse propagation in optical fiber is proposed to comprehensively analyze the impact of Group Velocity Dispersion (GVD) on the performance of two-dimensional wavelength hopping/time spreading optical code division multiple access (2-D WH/TS OCDMA) systems. In addition, many noise and interferences, including multiple access interference (MAI), optical beating interference (OBI), and receiver's noise are included in the analysis. Besides, we propose to use the heterodyne detection receiver so that the receiver's sensitivity can be improved. Analytical results show that, under the impact of GVD, the number of supportable users is extremely decreased and the maximum transmission length (i.e. the length at which BER 10-9 can be maintained) is remarkably shortened in the case of normal single mode fiber (ITU-T G.652) is used. The main factor that limits the system performance is time skewing. In addition, we show how the impact of GVD is relieved by dispersion-shifted fiber (ITU-T G.653). For example, a system with 321 Gbit/s users can achieve a maximum transmission length of 111 km when transmitted optical power per bit is -5 dBm.

  • A Reliable 1T1C FeRAM Using a Thermal History Tracking 2T2C Dual Reference Level Technique for a Smart Card Application Chip

    Shoichiro KAWASHIMA  Isao FUKUSHI  Keizo MORITA  Ken-ichi NAKABAYASHI  Mitsuharu NAKAZAWA  Kazuaki YAMANE  Tomohisa HIRAYAMA  Toru ENDO  

     
    PAPER-Next-Generation Memory for SoC

      Vol:
    E90-C No:10
      Page(s):
    1941-1948

    A robust 1T1C FeRAM sensing technique is demonstrated that employs both word base access and reference level generation architecture to track the thermal history of the cells by utilizing a Feedback inverter Input Push-down (FIP) method for a Bit line Ground Sensing (BGS) pre-amplifier and a self-timing latch Sense Amplifier (SA) which is immune to increasing non-switching charges due to thermal depolarization or imprint of ferroelectric capacitor. The word base access unit consists of one 2T2C cell that stores 0/1 data and also generates '0' and '1' reference levels by which other 1T1C signals are compared. A 0.18-µm CMOS 3-V 1-Mbit device was qualified by a 250 bake for a short time retention and 150 1000-hour bake which is an accelerated equivalent to 10-years retention. It endured 1012 fatigue cycles with an access time of 81 ns, 3.0 V VDD at 85. Also a Smart Card application chip which is embedded with the 1-Mbit FeRAM macro showed 30% faster download time than one with EEPROM.

  • Optical CDMA Spectral-Amplitude Codecs Capable of Reducing Multiple-Access and Optical Beat Interferences

    Jen-Fa HUANG  Yao-Tang CHANG  Song-Ming LIN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E87-B No:11
      Page(s):
    3195-3202

    Spectral-amplitude coding (SAC) techniques in fiber-Bragg-grating (FBG)-based optical code-division multiple-access (OCDMA) systems were investigated in our previous work. This paper adopts the same network architecture to investigate the simultaneous reductions of multiple-access interference (MAI) and optical beat interference (OBI). The MAI is caused by overlapping wavelengths from undesired network coder/decoders (codecs) while the OBI is induced by interaction of simultaneous chips at adjacent gratings. It is proposed that MAI and OBI reductions may be obtained by use of: 1) a source spectrum that is divided into equal chip spacing; 2) coded FBGs characterized by approximately the same number of "0" and "1" code elements; and 3) spectrally balanced photo-detectors. With quasi-orthogonal Walsh-Hadamard coded FBGs, complementary spectral chips is employed as signal pairs to be recombined and detected in balanced photo-detectors, thus achieving simultaneous suppression of both MAIs and OBIs. Simulation results showed that the proposed OCDMA spectral-amplitude coding scheme achieves significant MAI and OBI reductions.