The search functionality is under construction.

Keyword Search Result

[Keyword] CRAN(8hit)

1-8hit
  • Convergence of the Hybrid Implicit-Explicit Single-Field FDTD Method Based on the Wave Equation of Electric Field

    Kazuhiro FUJITA  

     
    BRIEF PAPER

      Pubricized:
    2022/03/24
      Vol:
    E105-C No:11
      Page(s):
    696-699

    The hybrid implicit-explicit single-field finite-difference time-domain (HIE-SF-FDTD) method based on the wave equation of electric field is reformulated in a concise matrix-vector form. The global approximation error of the scheme is discussed theoretically. The second-order convergence of the HIE-SF-FDTD is numerically verified.

  • User Pre-Scheduling and Beamforming with Imperfect CSI for Future Cloud/Fog-Radio Access Networks Open Access

    Megumi KANEKO  Lila BOUKHATEM  Nicolas PONTOIS  Thi-Hà-Ly DINH  

     
    INVITED PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-B No:7
      Page(s):
    1230-1239

    By incorporating cloud computing capabilities to provide radio access functionalities, Cloud Radio Access Networks (CRANs) are considered to be a key enabling technology of future 5G and beyond communication systems. In CRANs, centralized radio resource allocation optimization is performed over a large number of small cells served by simple access points, the Remote Radio Heads (RRHs). However, the fronthaul links connecting each RRH to the cloud introduce delays and entail imperfect Channel State Information (CSI) knowledge at the cloud processors. In order to satisfy the stringent latency requirements envisioned for 5G applications, the concept of Fog Radio Access Networks (FogRANs) has recently emerged for providing cloud computing at the edge of the network. Although FogRAN may alleviate the latency and CSI quality issues of CRAN, its distributed nature degrades network interference mitigation and global system performance. Therefore, we investigate the design of tailored user pre-scheduling and beamforming for FogRANs. In particular, we propose a hybrid algorithm that exploits both the centralized feature of the cloud for globally-optimized pre-scheduling using imperfect global CSIs, and the distributed nature of FogRAN for accurate beamforming with high quality local CSIs. The centralized phase enables the interference patterns over the global network to be considered, while the distributed phase allows for latency reduction, in line with the requirements of FogRAN applications. Simulation results show that our proposed algorithm outperforms the baseline algorithm under imperfect CSIs, jointly in terms of throughput, energy efficiency, as well as delay.

  • Computer-Aided Diagnosis of Intracranial Aneurysms in MRA Images with Case-Based Reasoning

    Syoji KOBASHI  Katsuya KONDO  Yutaka HATA  

     
    PAPER-Biological Engineering

      Vol:
    E89-D No:1
      Page(s):
    340-350

    Finding intracranial aneurysms plays a key role in preventing serious cerebral diseases such as subarachnoid hemorrhage. For detection of aneurysms, magnetic resonance angiography (MRA) can provide detailed images of arteries non-invasively. However, because over 100 MRA images per subject are required to cover the entire cerebrum, image diagnosis using MRA is very time-consuming and labor-intensive. This article presents a computer-aided diagnosis (CAD) system for finding aneurysms with MRA images. The principal components are identification of aneurysm candidates (= ROIs; regions of interest) from MRA images and estimation of a fuzzy degree for each aneurysm candidate based on a case-based reasoning (CBR). The fuzzy degree indicates whether a candidate is true aneurysm. Our system presents users with a limited number of ROIs that have been sorted in order of fuzzy degree. Thus, this system can decrease the time and the labor required for detecting aneurysms. Experimental results using phantoms indicate that the system can detect all aneurysms at branches of arteries and all saccular aneurysms produced by dilation of a straight artery in 1 direction perpendicular to the principal axis. In a clinical evaluation, performance in finding aneurysms and estimating the fuzzy degree was examined by applying the system to 16 subjects with a total of 19 aneurysms. The experimental results indicate that this CAD system detected all aneurysms except a fusiform aneurysm, and gave high fuzzy degrees and high priorities for the detected aneurysms.

  • A Design Method of an SPR System for Stabilization of a Crane without Velocity Measurement

    Young I. SON  Hyungbo SHIM  Kab-Il KIM  

     
    LETTER-Systems and Control

      Vol:
    E86-A No:11
      Page(s):
    2894-2896

    In order to stabilize a convey-crane with only cart position measurement, this paper designs an additional dynamics with which the parallel-connected system is feedback passive. Since the crane system can be stabilized with a proportional-derivative (PD) law, the additional system is constructed by using the PD gains, and the closed-loop system exhibits almost same performances with the PD law. With the proposed control law, the transfer function of the additional system has the form of sH(s) with a strictly positive real (SPR) H(s).

  • Quantitative Evaluation of TMJ Sound by Frequency Analysis

    Hiroshi SHIGA  Yoshinori KOBAYASHI  

     
    LETTER

      Vol:
    E78-A No:12
      Page(s):
    1683-1688

    In order to evaluate quantitatively TMJ sound, TMJ sound in normal subject group, CMD patient group A with palpable sounds unknown to them, CMD patient group B with palpable sounds known to them, and CMD patient group C with audible sounds were detected by a contact microphone, and frequency analysis of the power spectra was performed. The power spectra of TMJ sound of normal subject group and patient group A showed patterns with frequency values below 100 Hz, whereas the power spectra of patient groups B and C showed distinctively different patterns with peaks of frequency component exceeding 100 Hz. As regards the cumulative frequency value, the patterns for each group clearly differed from those of other groups; in particular the 80% cumulative frequency value showed the greatest difference. From these results, it is assumed that the 80% cumulative frequency value can be used as an effective indicator for quantitative evaluation of TMJ sound.

  • Estimation of the Location of Intracranial Vascular Diseases Using Several Sensors

    Satoshi HONGO  Masato ABE  Yoshiaki NEMOTO  Noriyoshi CHUBACHI  Yasunari OTAWARA  Akira OGAWA  

     
    PAPER

      Vol:
    E78-A No:12
      Page(s):
    1640-1648

    A non-invasive method is proposed to estimate the location of intracranial vascular disease using several sensors placed on the forehead. The advantage of this method over earlier measurements with a single ocular sensor is the abilty to localize the region of abnormal vascular tissue. A weighted least mean square procedure is applied to estimating the time difference between the sensor outputs using the phase distribution in the cross-spectrum. It is possible to estimate time differences shorter than sampling period. Computer simulation and clinical experiments demonstrate that a distance difference of around 20 times shorter than the wavelength can be obtained.

  • Noninvasive Detection of Intracranial Vascular Deformations by Bruit Transducer and Spectral Analysis

    Kenji KOBAYASHI  Jun HASEGAWA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1870-1871

    For the purpose of detecting the intracranial vascular deformations noninvasively, transducer for bruit sound emanated from diseased lesion and analyzing system were developed and applied clinically. Several aspects of the bruit signals were clarified and the possibility of early diagnosis was increased.

  • Time–Frequency Domain Analysis of the Acoustic Bio–Signal--Successful Cases of Wigner Distribution Applied in Medical Diagnosis--

    Jun HASEGAWA  Kenji KOBAYASHI  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1867-1869

    By applying Wigner distribution, which has high time resolution and high random noise reducing capability, to the acoustic bio–signals, the possibility of early diagnosis in both intracranial vascular deformation and prosthetic cardiac valve malfunction increased. Especially in latter case, 1st–order local moment of the distribution showed its effectiveness.