The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FILT(1579hit)

561-580hit(1579hit)

  • Estimation of a Long-Term Variation of a Magnetic-Storm Index Using the Merging Particle Filter

    Shin'ya NAKANO  Tomoyuki HIGUCHI  

     
    PAPER

      Vol:
    E92-D No:7
      Page(s):
    1382-1387

    The Dst index is the most popular measure of a scale of magnetic storms, and it is widely used as a monitor of the conditions of the Earth's magnetosphere. Since the Dst index contains contributions from multiple magnetospheric phenomena, it is important to distinguish each of the contributions in order to obtain meaningful information about the conditions of the magnetosphere. There have been several efforts which modeled temporal evolution of the Dst index empirically, and these empirical models considers some contributions separately. However, they take only short-term varations into accout, and contributions from phenomena which show long-term variations are neglected. In the present study, we have developed a technique for estimating the component of long-term variations of the Dst index using solar wind data and a nonlinear empirical model. The newly-developed technique adopts an algorithm which is similar to the particle filter. This algorithm allows an on-line processing of a long sequence of Dst data, which would enable a real-time estimation of system variables in a nonlinear system model. The estimates of the long-term variations can be used for accurate estimation of other contributions to the Dst index, which would provide credible information about the conditions of the magnetosphere. The framework proposed in the present study could be applied for the purpose of continuous real-time monitoring of the environment of the magnetosphere.

  • Analysis of Initialized LMS Equalizer for Frequency Selective MIMO Channels Using Single Carrier IEEE 802.16-2004 PHY

    Kadir TURK  Ismail KAYA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2413-2419

    An equalizer initialization technique for least mean squares (LMS) algorithm, which can equalize frequency selective multiple input multiple output (MIMO) channels, is presented and analyzed. The proposed method conducts an initial convergence step for superior training prior to running the LMS algorithm. This approach raises the training performance while the complexity of the LMS algorithm, which is known as the simplest training algorithm, is almost the same. The proposed technique is analyzed for the initial convergence and simulated for a possible single carrier MIMO application in single carrier (SC) IEEE802.16-2004 standards. The obtained performance after coding approximates the performance of the recursive least squares (RLS) algorithm as it is presented for 33 and 55 MIMO for comparisons.

  • A Novel Design of Regular Cosine-Modulated Filter Banks for Image Coding

    Toshiyuki UTO  Masaaki IKEHARA  Kenji OHUE  

     
    PAPER-Digital Signal Processing

      Vol:
    E92-A No:7
      Page(s):
    1633-1641

    This paper describes a design method of cosine-modulated filter banks (CMFB's) for an efficient coding of images. Whereas the CMFB has advantages of low design and implementation cost, subband filters of the CMFB do not have linear phase property. This prevents from employing a symmetric extension in transformation process, and leads to a degradation of the image compression performance. However, a recently proposed smooth extension alleviates the problem with CMFB's. As a result, well-designed CMFB's can be expected to be good candidates for a transform block in image compression applications. In this paper, we present a novel design approach of regular CMFB's. After introducing a regularity constraint on lattice parameters of a prototype filter in paraunitary (PU) CMFB's, we also derive a regularity condition for perfect reconstruction (PR) CMFB's. Finally, we design regular 8-channel PUCMFB and PRCMFB by an unconstrained optimization of residual lattice parameters, and several simulation results for test images are compared with various transforms for evaluating the proposed image coder based on the CMFB's with one degree of regularity. In addition, we show a computational complexity of the designed CMFB's.

  • Steady-State Kalman Filtering for Channel Estimation in OFDM Systems for Rayleigh Fading Channels

    Maduranga LIYANAGE  Iwao SASASE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2452-2460

    Kalman filters are effective channel estimators but they have the drawback of having heavy calculations when filtering needs to be done in each sample for a large number of subcarriers. In our paper we obtain the steady-state Kalman gain to estimate the channel state by utilizing the characteristics of pilot subcarriers in OFDM, and thus a larger portion of the calculation burden can be eliminated. Steady-state value is calculated by transforming the vector Kalman filtering in to scalar domain by exploiting the filter charactertics when pilot subcarriers are used for channel estimation. Kalman filters operate optimally in the steady-state condition. Therefore by avoiding the convergence period of the Kalman gain, the proposed scheme is able to perform better than the conventional method. Also, driving noise variance of the channel is difficult to obtain practical situations and accurate knowledge is important for the proper operation of the Kalman filter. Therefore, we extend our scheme to operate in the absence of the knowledge of driving noise variance by utilizing received Signal-to-Noise Ratio (SNR). Simulation results show considerable estimator performance gain can be obtained compared to the conventional Kalman filter.

  • Measuring Particles in Joint Feature-Spatial Space

    Liang SHA  Guijin WANG  Anbang YAO  Xinggang LIN  

     
    LETTER-Vision

      Vol:
    E92-A No:7
      Page(s):
    1737-1742

    Particle filter has attracted increasing attention from researchers of object tracking due to its promising property of handling nonlinear and non-Gaussian systems. In this paper, we mainly explore the problem of precisely estimating observation likelihoods of particles in the joint feature-spatial space. For this purpose, a mixture Gaussian kernel function based similarity is presented to evaluate the discrepancy between the target region and the particle region. Such a similarity can be interpreted as the expectation of the spatial weighted feature distribution over the target region. To adapt outburst of object motion, we also present a method to appropriately adjust state transition model by utilizing the priors of motion speed and object size. In comparison with the standard particle filter tracker, our tracking algorithm shows the better performance on challenging video sequences.

  • Tracking Analysis of Complex Adaptive IIR Notch Filter for a Linear Chirp Signal

    Aloys MVUMA  Shotaro NISHIMURA  Takao HINAMOTO  

     
    LETTER-Digital Signal Processing

      Vol:
    E92-A No:6
      Page(s):
    1526-1529

    This paper analyzes frequency tracking characteristics of a complex-coefficient adaptive infinite impulse response (IIR) notch filter with a simplified gradient-based algorithm. The input signal to the complex notch filter is a complex linear chirp embedded in a complex zero-mean white Gaussian noise. The analysis starts with derivation of a first-order real-coefficient difference equation with respect to steady-state instantaneous frequency tracking error. Closed-form expression for frequency tracking mean square error (MSE) is then derived from the difference equation. Lastly, closed-form expressions for optimum notch bandwidth coefficient and step size constant that minimize the frequency tracking MSE are derived. Computer simulations are presented to validate the analysis.

  • Frequency Domain Nulling Filter and Turbo Equalizer in Suppression of Interference for One-Cell Reused Single-Carrier TDMA Systems Open Access

    Chantima SRITIAPETCH  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2085-2094

    This paper proposes a frequency domain nulling filter and Turbo equalizer to suppress interference in the uplink of one-cell reuse single-carrier time division multiple access (TDMA) systems. In the proposed system, the desired signal in a reference cell is interfered by interference signals including adjacent-channel interference (ACI), co-channel interference (CCI), and intersymbol interference (ISI). At the transmitter, after a certain amount of spectrum is nulled considering the expected CCI, the suppressed power due to nulling is reallocated to the remaining spectrum components so as to keep the total transmit power constant. In this process, when mitigation of ACI is necessary, after a certain amount of spectrum at both edges is nulled using an edge-removal filter, the aforementioned process is conducted. At the receiver, frequency domain SC/MMSE Turbo equalizer (FDTE) is employed to suppress ISI due to spectrum nulling process in the transmitter as well as the multipath fading. Computer simulations confirm that the proposed scheme is effective in suppression of CCI, ACI and ISI in one-cell reuse single-carrier TDMA systems.

  • A Low Power Reconfigurable Channel Filter Using Multi-Band and Masking Architecture for Channel Adaptation in Cognitive Radio

    K. G. SMITHA  A. P. VINOD  

     
    PAPER-Digital Signal Processing

      Vol:
    E92-A No:6
      Page(s):
    1424-1432

    Cognitive radio (CR) is an adaptive spectrum sharing paradigm targeted to provide opportunistic spectrum access to secondary users for whom the frequency bands have not been licensed. The key tasks in a CR are to sense the spectral environment over a wide frequency band and allow unlicensed secondary users (CR users) to dynamically transmit/receive data over frequency bands unutilized by licensed primary users. Thus the CR transceiver should dynamically adapt its channel (frequency band) in response to the time-varying frequencies of wideband signal for seamless communication. In this paper, we present a low complexity reconfigurable filter architecture based on multi-band filtering and frequency masking techniques for dynamic channel adaptation in CR terminal. The proposed multi-standard architecture is capable of adapting to channels having different bandwidths corresponding to the channel spacing of time-varying channels. Design examples show that proposed architecture offers 12.2% power reduction and 26.5% average gate count reduction over conventional Per-Channel based architecture.

  • Estimation of Optimal Parameter in ε-Filter Based on Signal-Noise Decorrelation

    Mitsuharu MATSUMOTO  Shuji HASHIMOTO  

     
    LETTER-Algorithm Theory

      Vol:
    E92-D No:6
      Page(s):
    1312-1315

    ε-filter is a nonlinear filter for reducing noise and is applicable not only to speech signals but also to image signals. The filter design is simple and it can effectively reduce noise with an adequate filter parameter. This paper presents a method for estimating the optimal filter parameter of ε-filter based on signal-noise decorrelation and shows that it yields the optimal filter parameter concerning a wide range of noise levels. The proposed method is applicable where the noise to be removed is uncorrelated with signal, and it does not require any other knowledge such as noise variance and training data.

  • Effect of Pulse Shaping Filters on a Fractional Sampling OFDM System with Subcarrier-Based Maximal Ratio Combining

    Mamiko INAMORI  Takashi KAWAI  Tatsuya KOBAYASHI  Haruki NISHIMURA  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1484-1494

    In this paper, the effect of the impulse response of pulse shaping filters on a fractional sampling orthogonal frequency division multiplexing (FS OFDM) system is investigated. FS achieves path diversity with a single antenna through oversampling and subcarrier-based maximal ratio combining (MRC). Though the oversampling increases diversity order, correlation among noise components may deteriorate bit error rate (BER) performance. To clarify the relationship between the impulse response of the pulse shaping filter and the BER performance, five different pulse shaping filters are evaluated in the FS OFDM system. Numerical results of computer simulations show that the Frobenius norm of a whitening matrix corresponding to the pulse shaping filter has significant effect on the BER performance especially with a small numbers of subcarriers. It is also shown that metric adjustment based on the Frobenius norm improves BER performance of the coded FS OFDM system.

  • A Traffic Decomposition and Prediction Method for Detecting and Tracing Network-Wide Anomalies

    Ping DU  Shunji ABE  Yusheng JI  Seisho SATO  Makio ISHIGURO  

     
    PAPER-Internet Security

      Vol:
    E92-D No:5
      Page(s):
    929-936

    Traffic volume anomalies refer to apparently abrupt changes in the time series of traffic volume, which can propagate through the network. Detecting and tracing these anomalies is a critical and difficult task for network operators. In this paper, we first propose a traffic decomposition method, which decomposes the traffic into three components: the trend component, the autoregressive (AR) component, and the noise component. A traffic volume anomaly is detected when the AR component is outside the prediction band for multiple links simultaneously. Then, the anomaly is traced using the projection of the detection result matrices for the observed links which are selected by a shortest-path-first algorithm. Finally, we validate our detection and tracing method by using the real traffic data from the third-generation Science Information Network (SINET3) and show the detected and traced results.

  • MAP Receiver with Spatial Filters for Suppressing Cochannel Interference in MIMO-OFDM Mobile Communications

    Fan LISHENG  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:5
      Page(s):
    1841-1851

    This paper proposes joint maximum a posteriori (MAP) detection and spatial filtering for MIMO-OFDM mobile communications; it offers excellent receiver performance even over interference-limited channels. The proposed joint processor consists of a log likelihood generator and a MAP equalizer. The log likelihood generator suppresses cochannel interference by spatially filtering received signals and provides branch metrics of transmitted signal candidates. Using the branch metrics, the MAP equalizer generates log likelihood ratios of coded bits and performs channel decoding based on the MAP criterion. In the first stage, the log likelihood generator performs spatio-temporal filtering (STF) of the received signals prior to the fast Fourier transform (FFT) and is referred to as preFFT-type STF. Estimation of parameters including tap coefficients of the spatio-temporal filters and equivalent channel impulse responses of desired signals is based on the eigenvalue decomposition of an autocorrelation matrix of both the received and transmitted signals. For further improvement, in the second stage, the generator performs spatial filtering (SF) of the FFT output and is referred to as postFFT-type SF. Estimation of both tap coefficients of the spatial filters and channel impulse responses employs the recursive least squares (RLS) with smoothing. The reason for switching from preFFT-type STF into postFFT-type SF is that preFFT-type STF outperforms postFFT-type SF with a limited number of preamble symbols while postFFT-type SF outperforms preFFT-type STF when data symbols can be reliably detected and used for the parameter estimation. Note that there are two major differences between the proposed and conventional schemes: one is that the proposed scheme performs the two-stage processing of preFFT-type STF and postFFT-type SF, while the other is that the smoothing algorithm is applied to the parameter estimation of the proposed scheme. Computer simulations demonstrate that the proposed scheme can achieve excellent PER performance under interference-limited channel conditions and that it can outperform the conventional joint processing of preFFT-type STF and the MAP equalizer.

  • A Low Processing Cost Adaptive Algorithm Identifying Nonlinear Unknown System with Piecewise Linear Curve

    Kensaku FUJII  Ryo AOKI  Mitsuji MUNEYASU  

     
    PAPER-Digital Signal Processing

      Vol:
    E92-A No:4
      Page(s):
    1129-1135

    This paper proposes an adaptive algorithm for identifying unknown systems containing nonlinear amplitude characteristics. Usually, the nonlinearity is so small as to be negligible. However, in low cost systems, such as acoustic echo canceller using a small loudspeaker, the nonlinearity deteriorates the performance of the identification. Several methods preventing the deterioration, polynomial or Volterra series approximations, have been hence proposed and studied. However, the conventional methods require high processing cost. In this paper, we propose a method approximating the nonlinear characteristics with a piecewise linear curve and show using computer simulations that the performance can be extremely improved. The proposed method can also reduce the processing cost to only about twice that of the linear adaptive filter system.

  • An Automatic Unpacking Method for Computer Virus Effective in the Virus Filter Based on Paul Graham's Bayesian Theorem

    Dengfeng ZHANG  Naoshi NAKAYA  Yuuji KOUI  Hitoaki YOSHIDA  

     
    PAPER

      Vol:
    E92-B No:4
      Page(s):
    1119-1127

    Recently, the appearance frequency of computer virus variants has increased. Updates to virus information using the normal pattern matching method are increasingly unable to keep up with the speed at which viruses occur, since it takes time to extract the characteristic patterns for each virus. Therefore, a rapid, automatic virus detection algorithm using static code analysis is necessary. However, recent computer viruses are almost always compressed and obfuscated. It is difficult to determine the characteristics of the binary code from the obfuscated computer viruses. Therefore, this paper proposes a method that unpacks compressed computer viruses automatically independent of the compression format. The proposed method unpacks the common compression formats accurately 80% of the time, while unknown compression formats can also be unpacked. The proposed method is effective against unknown viruses by combining it with the existing known virus detection system like Paul Graham's Bayesian Virus Filter etc.

  • Mobile Positioning in Mixed LOS/NLOS Conditions Using Modified EKF Banks and Data Fusion Method

    Liang CHEN  Lenan WU  

     
    PAPER-Sensing

      Vol:
    E92-B No:4
      Page(s):
    1318-1325

    A novel method is proposed to track the position of MS in the mixed line-of-sight/non-line-of-sight (LOS/NLOS) conditions in cellular network. A first-order markov model is employed to describe the dynamic transition of LOS/NLOS conditions, which is hidden in the measurement data. This method firstly uses modified EKF banks to jointly estimate both mobile state (position and velocity) and the hidden sight state based on the the data collected by a single BS. A Bayesian data fusion algorithm is then applied to achieve a high estimation accuracy. Simulation results show that the location errors of the proposed method are all significantly smaller than that of the FCC requirement in different LOS/NLOS conditions. In addition, the method is robust in the parameter mismodeling test. Complexity experiments suggest that it supports real-time application. Moreover, this algorithm is flexible enough to support different types of measurement methods and asynchronous or synchronous observations data, which is especially suitable for the future cooperative location systems.

  • An Efficient Initialization Scheme for SOM Algorithm Based on Reference Point and Filters

    Shu-Ling SHIEH  I-En LIAO  Kuo-Feng HWANG  Heng-Yu CHEN  

     
    PAPER-Data Mining

      Vol:
    E92-D No:3
      Page(s):
    422-432

    This paper proposes an efficient self-organizing map algorithm based on reference point and filters. A strategy called Reference Point SOM (RPSOM) is proposed to improve SOM execution time by means of filtering with two thresholds T1 and T2. We use one threshold, T1, to define the search boundary parameter used to search for the Best-Matching Unit (BMU) with respect to input vectors. The other threshold, T2, is used as the search boundary within which the BMU finds its neighbors. The proposed algorithm reduces the time complexity from O(n2) to O(n) in finding the initial neurons as compared to the algorithm proposed by Su et al. [16] . The RPSOM dramatically reduces the time complexity, especially in the computation of large data set. From the experimental results, we find that it is better to construct a good initial map and then to use the unsupervised learning to make small subsequent adjustments.

  • Image Recommendation Algorithm Using Feature-Based Collaborative Filtering

    Deok-Hwan KIM  

     
    PAPER-Contents Technology and Web Information Systems

      Vol:
    E92-D No:3
      Page(s):
    413-421

    As the multimedia contents market continues its rapid expansion, the amount of image contents used in mobile phone services, digital libraries, and catalog service is increasing remarkably. In spite of this rapid growth, users experience high levels of frustration when searching for the desired image. Even though new images are profitable to the service providers, traditional collaborative filtering methods cannot recommend them. To solve this problem, in this paper, we propose feature-based collaborative filtering (FBCF) method to reflect the user's most recent preference by representing his purchase sequence in the visual feature space. The proposed approach represents the images that have been purchased in the past as the feature clusters in the multi-dimensional feature space and then selects neighbors by using an inter-cluster distance function between their feature clusters. Various experiments using real image data demonstrate that the proposed approach provides a higher quality recommendation and better performance than do typical collaborative filtering and content-based filtering techniques.

  • Iterative Channel Estimation in MIMO Antenna Selection Systems for Correlated Gauss-Markov Channel

    Yousuke NARUSE  Jun-ichi TAKADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:3
      Page(s):
    922-932

    We address the issue of MIMO channel estimation with the aid of a priori temporal correlation statistics of the channel as well as the spatial correlation. The temporal correlations are incorporated to the estimation scheme by assuming the Gauss-Markov channel model. Under the MMSE criteria, the Kalman filter performs an iterative optimal estimation. To take advantage of the enhanced estimation capability, we focus on the problem of channel estimation from a partial channel measurement in the MIMO antenna selection system. We discuss the optimal training sequence design, and also the optimal antenna subset selection for channel measurement based on the statistics. In a highly correlated channel, the estimation works even when the measurements from some antenna elements are omitted at each fading block.

  • Constraints of Second-Order Vanishing Moments on Lattice Structures for Non-separable Orthogonal Symmetric Wavelets

    Atsuyuki ADACHI  Shogo MURAMATSU  Hisakazu KIKUCHI  

     
    PAPER

      Vol:
    E92-A No:3
      Page(s):
    788-797

    In this paper, a design method of two-dimensional (2-D) orthogonal symmetric wavelets is proposed by using a lattice structure for multi-dimensional (M-D) linear-phase paraunitary filter banks (LPPUFB), which the authors have proposed as a previous work and then modified by Lu Gan et al. The derivation process for the constraints on the second-order vanishing moments is shown and some design examples obtained through optimization with the constraints are exemplified. In order to verify the significance of the constraints, some experimental results are shown for Lena and Barbara image.

  • A Bottom-Up Design Approach of Critically Sampled Contourlet Transform for Efficient Image Representation

    Seisuke KYOCHI  Shizuka HIGAKI  Yuichi TANAKA  Masaaki IKEHARA  

     
    PAPER

      Vol:
    E92-A No:3
      Page(s):
    762-771

    In this paper, a novel design method of critically sampled contourlet transform (CSCT) is proposed. The original CT which consists of Laplacian pyramid and directional filter bank provides efficient frequency plane partition for image representation. However its overcompleteness is not suitable for some applications such as image coding, its critical sampling version has been studied recently. Although several types of the CSCT have been proposed, they have problems on their realization or unnatural frequency plane partition which is different from the original CT. In contrast to the way in conventional design methods based on a "top-down" approach, the proposed method is based on a "bottom-up" one. That is, the proposed CSCT decomposes the frequency plane into small directional subbands, and then synthesizes them up to a target frequency plane partition, while the conventional ones decompose into it directly. By this way, the proposed CSCT can design an efficient frequency division which is the same as the original CT for image representation can be realized. In this paper, its effectiveness is verified by non-linear approximation simulation.

561-580hit(1579hit)