The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] GeAr(6hit)

1-6hit
  • Extension and Performance/Accuracy Formulation for Optimal GeAr-Based Approximate Adder Designs

    Ken HAYAMIZU  Nozomu TOGAWA  Masao YANAGISAWA  Youhua SHI  

     
    PAPER

      Vol:
    E101-A No:7
      Page(s):
    1014-1024

    Approximate computing is a promising solution for future energy-efficient designs because it can provide great improvements in performance, area and/or energy consumption over traditional exact-computing designs for non-critical error-tolerant applications. However, the most challenging issue in designing approximate circuits is how to guarantee the pre-specified computation accuracy while achieving energy reduction and performance improvement. To address this problem, this paper starts from the state-of-the-art general approximate adder model (GeAr) and extends it for more possible approximate design candidates by relaxing the design restrictions. And then a maximum-error-distance-based performance/accuracy formulation, which can be used to select the performance/energy-accuracy optimal design from the extended design space, is proposed. Our evaluation results show the effectiveness of the proposed method in terms of area overhead, performance, energy consumption, and computation accuracy.

  • Investigation on Propagation Characteristics of PD-induced Electromagnetic Wave in T-Shaped GIS Based on FDTD Method

    Mingzhe RONG  Tianhui LI  Xiaohua WANG  Dingxin LIU  Anxue ZHANG  

     
    PAPER

      Vol:
    E97-C No:9
      Page(s):
    880-887

    When ultra-high-frequency (UHF) method is applied in partial discharge (PD) detection for GIS, the propagation process and rules of electromagnetic (EM) wave need to be understood clearly for conducting diagnosis and assessment about the real insulation status. The preceding researches are mainly concerning about the radial component of the UHF signal, but the propagation of the signal components in axial and radial directions and that perpendicular to the radial direction of the GIS tank are rarely considered. So in this paper, for a 252,kV GIS with T-shaped structure (TS), the propagation and attenuation of PD-induced EM wave in different circumferential angles and directions are investigated profoundly in time and frequency domain based on Finite Difference Time Domain (FDTD) method. The attenuation rules of the peak to peak value (Vpp) and cumulative energy are concluded. By comparing the results of straight branch and T branch, the influence of T-shaped structure over the propagation of different signal components are summarized. Moreover, the new circumferential and axial location methods proposed in the previous work are verified to be still applicable. This paper discusses the propagation mechanism of UHF signal in T-shaped tank, which provides some referential significance towards the utilization of UHF technique and better implementation of PD detection.

  • Design of Gear-Form Cathode as a Removal Modusof Optical Materials of Indium-Tin-Oxide

    Pai-Shan PA  

     
    BRIEF PAPER

      Vol:
    E92-C No:11
      Page(s):
    1358-1361

    A precision in thickness recycling modus for a displays' color filter surface using a gear-form cathode in microelectrochemical removal is developed in the study. Through the precise removal processes of optical materials of nanostructure of Indium-Tin-Oxide crystallization, the optoelectronic semiconductor industry can effectively recycle defective products, and reducing production costs.

  • Virtual 3D Gearbox Widget Technique for Precise Adjustment by Hand Motion in Immersive VR

    Noritaka OSAWA  Xiangshi REN  

     
    PAPER-Multimedia Pattern Processing

      Vol:
    E87-D No:10
      Page(s):
    2408-2414

    Direct manipulation by hand is an intuitive and simple way of positioning objects in an immersive virtual environment. However, this technique is not suitable for making precise adjustments to virtual objects in an immersive environment because it is difficult to hold a hand unsupported in midair and to then release an object at a fixed point. We therefore propose an alternative technique using a virtual 3D gearbox widget that we have designed, which enables users to adjust values precisely. We tested the technique in a usability study along with the use of hand manipulation and a slider. The results showed that the gearbox was the best of the three techniques for precise adjustment of small targets, in terms of both performance data and subject preference.

  • A Novel Optical Fiber Measurement System of Arc Motion in Molded Case Circuit Breakers

    Zhipeng LI  Degui CHEN  Hongwu LIU  Xingwen LI  

     
    PAPER-Contactor and Relay

      Vol:
    E87-C No:8
      Page(s):
    1329-1335

    To measure the arc motion in interruption process of low voltage molded case circuit breakers (MCCBs) more precisely, a set of novel 2-D optical fiber system is developed. To improve the spatial resolution of optical fibers, lens with inhomogeneous dielectric is fixed on the top of each fiber. Furthermore, the full hardware control logic facilitates the real-time, synchronous and high-speed processing and breaks through the restricted bus operation frequency range and data stream capacity of microprocessor. The Publisher-Subscribe behavioral design pattern is applied to the software and the loosely coupled relationship between glyph and experimental data is once established, the graphic configuration can be implemented for simulation analysis, and the flexibility and applicability of the whole system are obviously improved. It demonstrates that the system provides a better research technique especially for new generation MCCB with gas driven arc.

  • 3-Dimensional Process Simulation of Thermal Annealing of Low Dose Implanted Dopants in Silicon

    Vincent SENEZ  Jerome HERBAUX  Thomas HOFFMANN  Evelyne LAMPIN  

     
    PAPER-Process Modeling and Simulation

      Vol:
    E83-C No:8
      Page(s):
    1267-1274

    This paper reports the implementation in three dimensions (3D) of diffusion models for low dose implanted dopants in silicon and the various numerical issues associated with it. In order to allow the end-users to choose between high accuracy or small calculation time, a conventional and 5-species diffusion models have been implemented in the 3D module DIFOX-3D belonging to the PROMPT plateform. By comparison with one and two-dimensional (1D and 2D) simulations performed with IMPACT-4, where calibrated models exist, the validity of this 3D models have been checked. Finally, the results obtained for a 3-dimensional simulation of a rapid thermal annealing step involved in the manufacturing of a MOS transistor are presented what show the capability of this module to handle the optimization of real devices.