The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IGT(4hit)

1-4hit
  • Analysis of Relaxation Oscillation in a Resonant Tunneling Diode Integrated with a Bow-Tie Antenna

    Naoto OKUMURA  Kiyoto ASAKAWA  Michihiko SUHARA  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    430-438

    In general, tunnel diodes exhibit various types of oscillation mode: the sinusoidal mode or the nonsinusoidal mode which is known as the relaxation oscillation (RO) mode. We derive a condition for generating the RO in resonant tunneling diodes (RTDs) with essential components for equivalent circuit model. A conditional equation to obtain sufficient nonlinearity towards the robust RO is clarified. Moreover, its condition also can be applied in case of a bow-tie antenna integrated RTD, thus a design policy to utilize the RO region for the antenna integrated RTD is established by numerical evaluations of time-domain large-signal nonlinear analysis towards a terahertz transmitter for broadband wireless communications.

  • Implementation of Physics-Based Model for Current-Voltage Characteristics in Resonant Tunneling Diodes by Using the Voigt Function

    Hideaki SHIN-YA  Michihiko SUHARA  Naoya ASAOKA  Mamoru NAOI  

     
    PAPER-THz Electronics

      Vol:
    E93-C No:8
      Page(s):
    1295-1301

    We derive physics-based formula of current-voltage characteristic for resonant tunneling diodes (RTDs) by using the Voigt function. The Voigt function describes the mixing condition of homogeneous and inhomogeneous broadenings of peak energy width in transmission probability, which is sensitively reflected to nonlinear negative differential resistance of RTDs. The obtained formula is applicable to the SPICE model of RTD without performing numerical integrals. We indicate validity of the formula by comparing to measured data for double-barrier and triple-barrier RTDs.

  • Performance Analysis of Distributed Control Architecture Model in Carrier Class VoIP Network

    Peir-Yuan WANG  Jung-Shyr WU  Jaan-Ming HWU  

     
    PAPER

      Vol:
    E85-D No:8
      Page(s):
    1205-1218

    The potential network architecture of the emerging carrier class VoIP (Voice over IP) technology for NGN (Next Generation Networks) adopts distributed control architecture to take full advantage of scalability, reliability, flexibility, and interoperability. However, the design of distributed control architecture in the carrier class VoIP network is the state-of-the-art in decentralization and distribution of control. Different configurations of system elements, control scheme of inter system elements communications, signaling protocol, functional partitioning, and scheduling of jobs in call control processing may affect the system performance and QoS (Quality of Service) of MGC (Media Gateway Controller) in carrier class VoIP network. Hence, the modeling of distributed control architecture and its performance analysis are essential issues whenever optimum control architecture has to be determined to meet design requirements. Based on these reasons, this paper proposes several potential network architectures and focuses on the performance study of distributed control architecture in carrier class VoIP network. The SIGTRAN-based distributed control architecture model and the MGCP/MEGACO-based distributed control architecture model are presented. Then, we analyze the SIGTRAN-based distributed control architecture model between MGC and SG (Signaling Gateway) using WRR (Weighted Round Robin) and WF2Q (Worst-case Fair Weighted Fair Queueing) scheduling algorithms respectively. And, we analyze the MGCP/MEGACO-based distributed control architecture model between MGC and MG (Media Gateway) using M/G/1 gating service queueing model. Consequently, the results of performance analysis can be used to evaluate whether the performance of distributed control architecture model can meet the requirement of planning and design for carrier class VoIP network deployment.

  • Electrothermal Analysis of Latch-Up in an Insulated Gate Transistor (IGT)

    Hermann BRAND  Siegfried SELBERHERR  

     
    PAPER-Device Simulation

      Vol:
    E77-C No:2
      Page(s):
    179-186

    An advanced model for self-heating effects in power semiconductor devices is derived from principles of irreversible thermodynamics. The importance of the entropy balance equation is emphasized. The governing equations for the coupled transport of charge carriers and heat are valid in both the stationary and transient regimes. Four characteristic effects contributing to the heat generation can be identified: Joule heating, recombination heating, Thomson heating and carrier source heating. Bandgap narrowing effects are included. Hot carrier effects are neglected. Numerical methods to solve the governing equations for the coupled transport of charge carriers and heat are described. Finally, results obtained in simulating latch-up in an IGT are discussed.