1-5hit |
Naoto OKUMURA Kiyoto ASAKAWA Michihiko SUHARA
In general, tunnel diodes exhibit various types of oscillation mode: the sinusoidal mode or the nonsinusoidal mode which is known as the relaxation oscillation (RO) mode. We derive a condition for generating the RO in resonant tunneling diodes (RTDs) with essential components for equivalent circuit model. A conditional equation to obtain sufficient nonlinearity towards the robust RO is clarified. Moreover, its condition also can be applied in case of a bow-tie antenna integrated RTD, thus a design policy to utilize the RO region for the antenna integrated RTD is established by numerical evaluations of time-domain large-signal nonlinear analysis towards a terahertz transmitter for broadband wireless communications.
Shinpei YAMASHITA Michihiko SUHARA Kenichi KAWAGUCHI Tsuyoshi TAKAHASHI Masaru SATO Naoya OKAMOTO Kiyoto ASAKAWA
We fabricate and characterize a GaAsSb/InGaAs backward diode (BWD) toward a realization of high sensitivity zero bias microwave rectification for RF wave energy harvest. Lattice-matched p-GaAsSb/n-InGaAs BWDs were fabricated and their current-voltage (I-V) characteristics and S-parameters up to 67 GHz were measured with respect to several sorts of mesa diameters in μm order. Our theoretical model and analysis are well fitted to the measured I-Vs on the basis of WKB approximation of the transmittance. It is confirmed that the interband tunneling due to the heterojunction is a dominant transport mechanism to exhibit the nonlinear I-V around zero bias regime unlike recombination or diffusion current components on p-n junction contribute in large current regime. An equivalent circuit model of the BWD is clarified by confirming theoretical fitting for frequency dependent admittance up to 67 GHz. From the circuit model, eliminating the parasitic inductance component, the frequency dependence of voltage sensitivity of the BWD rectifier is derived with respect to several size of mesa diameter. It quantitatively suggests an effectiveness of mesa size reduction to enhance the intrinsic matched voltage sensitivity with increasing junction resistance and keeping the magnitude of I-V curvature coefficient.
Masataka NAKANISHI Michihiko SUHARA Kiyoto ASAKAWA
We numerically demonstrate a possibility on-off keying (OOK) type of modulation over tens gigabits per second for sub-terahertz radiation in our proposed wireless transmitter device structure towards radio over fiber (RoF) technology. The integrated device consists of an InP-based compound semiconductor resonant tunneling diode (RTD) adjacent to an InP-based photo diode (PD), a self-complementary type of bow-tie antenna (BTA), external microstrip lines. These integration structures are carefully designed to obtain robust relaxation oscillation (RO) due to the negative differential conductance (NDC) characteristic of the RTD and the nonlinearity of the NDC. Moreover, the device is designed to exhibit OOK modulation of RO due to photo current from the PD inject into the RTD. Electromagnetic simulations and nonlinear equivalent circuit model of the whole device structure are established to perform large signal analysis numerically with considerations of previously measured characteristics of the triple-barrier RTD.
Kiyoto ASAKAWA Yosuke ITAGAKI Hideaki SHIN-YA Mitsufumi SAITO Michihiko SUHARA
Large-signal-based nonlinear models are developed to analyze a variety of dynamic performances in a resonant tunneling diode (RTD) with peripheral circuits such as an integrated broad band bow-tie antenna, a bias circuit and a bias stabilizer circuit. Dynamic modes of the RTD are classified by the time-domain analysis with the model. On the basis of our model, we suggest a possibility to discuss a terahertz order oscillation mode control, and the ASK modulation in several tens Gbit/sec in the RTD with the broad band antenna. Validity of the model and analysis is shown by explaining measured results of modulated oscillation signals in fabricated triple-barrier RTDs.
Kotaro AIKAWA Michihiko SUHARA Takumi KIMURA Junki WAKAYAMA Takeshi MAKINO Katsuhiro USUI Kiyoto ASAKAWA Kouichi AKAHANE Issei WATANABE
S-parameters of InGaAs/InAlAs triple-barrier resonant tunneling diodes (TBRTDs) were measured up to 67 GHz with various mesa areas and various bias voltages. Admittance data of bare TBRTDs are deembedded and evaluated by getting rid of parasitic components with help of electromagnetic simulations for particular fabricated device structures. Admittance spectroscopy up to 67 GHz is applied for bare TBRTDs for the first time and a Kramers-Kronig relation with Lorentzian function is found to be a consistent model for the admittance especially in cases of low bias conditions. Relaxation time included in the Lorentzian function are tentatively evaluated as the order of several pico second.