The search functionality is under construction.

Keyword Search Result

[Keyword] LO power(3hit)

1-3hit
  • A High Performance Downconverter MMIC for DBS Applications

    Young YUN  Takeshi FUKUDA  Taketo KUNIHISA  Osamu ISHIKAWA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E84-C No:11
      Page(s):
    1679-1688

    In this work, using 0.2 µm GaAs modulation doped FET (MODFET), a high performance downconverter MMIC was developed for direct broadcasting satellite (DBS) applications. The downconverter MMIC showed a noise figure of 4.3 dB which is lower by 5 dB than conventional ones, and required only a low LO power of -10 dBm for normal DBS operation. At a low LO power of -10 dBm, the power consumption was 175 mW, which is lower than 50 percent of conventional ones. The frequency response of conversion gain exhibited a low gain ripple of 0.9 dB, and the LO leakage power was suppressed to a lower value than -30 dBm under a LO input power of -10 dBm. The fabricated chip exhibited a small size of 0.840.9 mm2. The objectives of this work are to improve the traditional direct broadcasting satellite (DBS) downconverters by an efficient circuit design and to describe the techniques employed in the design.

  • An Optimum Bias Point Study of Low Local Oscillator Power Operation for 60 GHz Drain Mixer

    Keiichi YAMAGUCHI  Yasuhiko KURIYAMA  Eiji TAKAGI  Mitsuo KONNO  

     
    PAPER-Low Power-Consumption RF ICs

      Vol:
    E82-C No:11
      Page(s):
    1982-1991

    The optimum bias point for a drain mixer operating on low local oscillator (LO) power was investigated. The bias voltage dependence of the required LO power and the conversion gain in the drain mixer was clarified by a simplified nonlinear model which the drain current characteristics around knee voltage is approximated by two straight line segments. It was found that an optimum gate bias voltage Vgs exists for a given applied LO power, and the optimum gate bias voltage moves toward the pinch-off voltage as the injection LO power level decreases. In order to verify the variation of the optimum gate bias voltage, a 60 GHz MMIC drain mixer adopting the optimum gate bias voltage for low LO power level was fabricated. The fabricated drain mixer exhibited a conversion gain of 0 dB with the injection LO power level of 0 dBm. This value of 0 dBm is the best performance yet obtained for a 60 GHz MMIC drain mixer. The measured optimum gate bias voltage was near the pinch-off voltage. This result was in good agreement with the theoretical analysis. The LO power level of a drain mixer has been improved so that it is on a par with that of a gate mixer.

  • Analyses on Monolithic InP HEMT Resistive Mixer Operating under Very Low LO Power

    Takuo KASHIWA  Kazuya YAMAMOTO  Takayuki KATOH  Takao ISHIDA  Takahide ISHIKAWA  Yasuo MITSUI  Yoshikazu NAKAYAMA  

     
    PAPER-Electronic Circuits

      Vol:
    E82-C No:10
      Page(s):
    1831-1838

    This paper describes numerical analyses of resistive mixer operation, followed by measured performances of a V-band (50 - 75 GHz) monolithic InP HEMT resistive mixer operable with a very low LO power. Our model assumes that the channel conductance of the InP HEMT can be described by three linear functions according to the applied gate voltage. The calculated results obtained with the model have shown that the LO power level required for mixer operation is determined by the gate bias voltage and that a device with abrupt conductance shifts is suited to low LO power operation for a resistive mixer. It is also shown that conversion loss saturation of a resistive mixer is caused by its channel conductance saturation. A V-band monolithic resistive mixer has been designed and fabricated using Coplanar Waveguides (CPW) and a 0.15 mm InP HEMT with abrupt channel shifts. Good agreement between measured and simulated conversion losses are obtained. A minimum conversion loss of 8.4 dB is achieved at the 55 GHz RF-frequency and the -2 dBm LO power. It also exhibits an excellent IF output linearity to allow the 1 dB compression RF input level to be comparable with LO power, indicating good intermodulation performance. It is demonstrated that the proposed simple model of the channel conductance can easily calculate conversion characteristics of a resistive mixer with high accuracy.