The search functionality is under construction.

Keyword Search Result

[Keyword] MIPS processor(3hit)

1-3hit
  • Asynchronous Circuit Designs on an FPGA for Targeting a Power/Energy Efficient SoC

    Jeong-Gun LEE  Myeong-Hoon OH  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    253-263

    A modern system-on-chip (SoC) includes many heterogeneous IP components. Generally, a few embedded processors are integrated into SoCs. An asynchronous circuit design technique is employed to achieve low power/energy consumption. In this paper, we design an asynchronous embedded processor on FPGAs and analyze its possible benefits on commercial FPGAs. We use commercially available 65nm high-performance Virtex-5 and 45nm low-power Spartan-6 Xilinx FPGAs to show the impact on power consumption for the two different extreme cases. For the high performance Virtex-5, our asynchronous processor shows 36.8% lower power consumption when compared with its synchronous counterpart. On the other hand, the asynchronous processor consumes 25.6% more power in a low power Spartan-6 FPGA. However, through simple analysis and power simulation, we show that the event-driven nature of asynchronous circuits can further save power/energy even in the Spartan-6 FPGA.

  • Code Compression with Split Echo Instructions

    Iver STUBDAL  Arda KARADUMAN  Hideharu AMANO  

     
    PAPER-Fundamentals of Software and Theory of Programs

      Vol:
    E92-D No:9
      Page(s):
    1650-1656

    Code density is often a critical issue in embedded computers, since the memory size of embedded systems is strictly limited. Echo instructions have been proposed as a method for reducing code size. This paper presents a new type of echo instruction, split echo, and evaluates an implementation of both split echo and traditional echo instructions on a MIPS R3000 based processor. Evaluation results show that memory requirement is reduced by 12% on average with small additional hardware cost.

  • A Semi-Synchronous Circuit Design Method by Clock Tree Modification

    Seiichiro ISHIJIMA  Tetsuaki UTSUMI  Tomohiro OTO  Atsushi TAKAHASHI  

     
    PAPER-VLSI Design

      Vol:
    E85-A No:12
      Page(s):
    2596-2602

    A circuit in which the clock is assumed to be distributed periodically to each individual register though not necessarily to all registers simultaneously, called a semi-synchronous circuit, is expected to achieve higher frequency or a smaller clock tree compared with an ordinary synchronous circuit, called a complete-synchronous circuit. In this paper, we propose a circuit design method that realizes a semi-synchronous circuit with higher frequency by modifying the clock tree of a complete-synchronous circuit. We confirm that the proposed method is easy to incorporate with current practical design environment by designing a four stage pipelined processor compatible with MIPS operation code. The obtained processor circuit is the first semi-synchronous circuit designed systematically with theoretical background.