The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

481-500hit(3945hit)

  • Generation of Efficient Obfuscated Code through Just-in-Time Compilation

    Muhammad HATABA  Ahmed EL-MAHDY  Kazunori UEDA  

     
    LETTER-Dependable Computing

      Pubricized:
    2018/11/22
      Vol:
    E102-D No:3
      Page(s):
    645-649

    Nowadays the computing technology is going through a major paradigm shift. Local processing platforms are being replaced by physically out of reach yet more powerful and scalable environments such as the cloud computing platforms. Previously, we introduced the OJIT system as a novel approach for obfuscating remotely executed programs, making them difficult for adversaries to reverse-engineer. The system exploited the JIT compilation technology to randomly and dynamically transform the code, making it constantly changing, thereby complicating the execution state. This work aims to propose the new design iOJIT, as an enhanced approach that patches the old systems shortcomings, and potentially provides more effective obfuscation. Here, we present an analytic study of the obfuscation techniques on the generated code and the cost of applying such transformations in terms of execution time and performance overhead. Based upon this profiling study, we implemented a new algorithm to choose which obfuscation techniques would be better chosen for “efficient” obfuscation according to our metrics, i.e., less prone to security attacks. Another goal was to study the system performance with different applications. Therefore, we applied our system on a cloud platform running different standard benchmarks from SPEC suite.

  • Design and Analysis of Approximate Multipliers with a Tree Compressor

    Tongxin YANG  Tomoaki UKEZONO  Toshinori SATO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E102-A No:3
      Page(s):
    532-543

    Many applications, such as image signal processing, has an inherent tolerance for insignificant inaccuracies. Multiplication is a key arithmetic function for many applications. Approximate multipliers are considered an efficient technique to trade off energy relative to performance and accuracy for the error-tolerant applications. Here, we design and analyze four approximate multipliers that demonstrate lower power consumption and shorter critical path delay than the conventional multiplier. They employ an approximate tree compressor that halves the height of the partial product tree and generates a vector to compensate accuracy. Compared with the conventional Wallace tree multiplier, one of the evaluated 8-bit approximate multipliers reduces power consumption and critical path delay by 36.9% and 38.9%, respectively. With a 0.25% normalized mean error distance, the silicon area required to implement the multiplier is reduced by 50.3%. Our multipliers outperform the previously proposed approximate multipliers relative to power consumption, critical path delay, and design area. Results from two image processing applications also demonstrate that the qualities of the images processed by our multipliers are sufficiently accurate for such error-tolerant applications.

  • The Coloring Reconfiguration Problem on Specific Graph Classes

    Tatsuhiko HATANAKA  Takehiro ITO  Xiao ZHOU  

     
    PAPER

      Pubricized:
    2018/10/30
      Vol:
    E102-D No:3
      Page(s):
    423-429

    We study the problem of transforming one (vertex) c-coloring of a graph into another one by changing only one vertex color assignment at a time, while at all times maintaining a c-coloring, where c denotes the number of colors. This decision problem is known to be PSPACE-complete even for bipartite graphs and any fixed constant c ≥ 4. In this paper, we study the problem from the viewpoint of graph classes. We first show that the problem remains PSPACE-complete for chordal graphs even if c is a fixed constant. We then demonstrate that, even when c is a part of input, the problem is solvable in polynomial time for several graph classes, such as k-trees with any integer k ≥ 1, split graphs, and trivially perfect graphs.

  • Efficient Enumeration of Flat-Foldable Single Vertex Crease Patterns

    Koji OUCHI  Ryuhei UEHARA  

     
    PAPER

      Pubricized:
    2018/10/31
      Vol:
    E102-D No:3
      Page(s):
    416-422

    We investigate enumeration of distinct flat-foldable crease patterns under the following assumptions: positive integer n is given; every pattern is composed of n lines incident to the center of a sheet of paper; every angle between adjacent lines is equal to 2π/n; every line is assigned one of “mountain,” “valley,” and “flat (or consequently unfolded)”; crease patterns are considered to be equivalent if they are equal up to rotation and reflection. In this natural problem, we can use two well-known theorems for flat-foldability: the Kawasaki Theorem and the Maekawa Theorem in computational origami. Unfortunately, however, they are not enough to characterize all flat-foldable crease patterns. Therefore, so far, we have to enumerate and check flat-foldability one by one using computer. In this study, we develop the first algorithm for the above stated problem by combining these results in a nontrivial way and show its analysis of efficiency.

  • Full-Aperture Processing of Ultra-High Resolution Spaceborne SAR Spotlight Data Based on One-Step Motion Compensation Algorithm

    Tianshun XIANG  Daiyin ZHU  

     
    PAPER-Remote Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    247-256

    With the development of spaceborne synthetic aperture radar (SAR), ultra-high spatial resolution has become a hot topic in recent years. The system with high spatial resolution requests large range bandwidths and long azimuth integration time. However, due to the long azimuth integration time, many problems arise, which cannot be ignored in the operational ultra-high resolution spotlight mode. This paper investigates two critical issues that need to be noticed for the full-aperture processing of ultra-high resolution spaceborne SAR spotlight data. The first one is the inaccuracy of the traditional hyperbolic range model (HRM) when the system approaches decimeter range resolution. The second one is the azimuth spectral folding phenomenon. The problems mentioned above result in significant degradation of the focusing effect. Thus, to solve these problems, a full-aperture processing scheme is proposed in this paper which combines the superiorities of two generally utilized processing algorithms: the precision of one-step motion compensation (MOCO) algorithm and the efficiency of modified two-step processing approach (TSA). Firstly, one-step MOCO algorithm, a state-of-the-art MOCO algorithm which has been applied in ultra-high resolution airborne SAR systems, can precisely correct for the error caused by spaceborne curved orbit. Secondly, the modified TSA can avoid the phenomenon of azimuth spectrum folding effectively. The key point of the modified TSA is the deramping approach which is carried out via the convolution operation. The reference function, varying with the instantaneous range frequency, is adopted by the convolution operation for obtaining the unfolding spectrum in azimuth direction. After these operations, the traditional wavenumber domain algorithm is available because the error caused by spaceborne curved orbit and the influence of the spectrum folding in azimuth direction have been totally resolved. Based on this processing scheme, the ultra-high resolution spaceborne SAR spotlight data can be well focused. The performance of the full-aperture processing scheme is demonstrated by point targets simulation.

  • Optimizing Slot Utilization and Network Topology for Communication Pattern on Circuit-Switched Parallel Computing Systems

    Yao HU  Michihiro KOIBUCHI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/11/16
      Vol:
    E102-D No:2
      Page(s):
    247-260

    In parallel computing systems, the interconnection network forms the critical infrastructure which enables robust and scalable communication between hundreds of thousands of nodes. The traditional packet-switched network tends to suffer from long communication time when network congestion occurs. In this context, we explore the use of circuit switching (CS) to replace packet switches with custom hardware that supports circuit-based switching efficiently with low latency. In our target CS network, a certain amount of bandwidth is guaranteed for each communication pair so that the network latency can be predictable when a limited number of node pairs exchange messages. The number of allocated time slots in every switch is a direct factor to affect the end-to-end latency, we thereby improve the slot utilization and develop a network topology generator to minimize the number of time slots optimized to target applications whose communication patterns are predictable. By a quantitative discrete-event simulation, we illustrate that the minimum necessary number of slots can be reduced to a small number in a generated topology by our design methodology while maintaining network cost 50% less than that in standard tori topologies.

  • Electrophoretic Co-Deposition of Alumina-Resin Composites on Metal Substrate Using Polydimethylsiloxane-Based Organic-Inorganic Hybrid Materials as Binders

    Yusuke AOKI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    199-202

    Electrophoretic deposition (EPD) usingpolydimethylsiloxane(PDMS)-based organic-inorganic hybrid materials as binders can be used to prepare alumina-binder composites on metal substrates. Herein, we investigated the deposition mechanism of PDMS-based polymers. The composition and porosity of EPD composites can be controlled by adjusting the EPD condition, and shape of alumina particles.

  • FSCRank: A Failure-Sensitive Structure-Based Component Ranking Approach for Cloud Applications

    Na WU  Decheng ZUO  Zhan ZHANG  Peng ZHOU  Yan ZHAO  

     
    PAPER-Dependable Computing

      Pubricized:
    2018/11/13
      Vol:
    E102-D No:2
      Page(s):
    307-318

    Cloud computing has attracted a growing number of enterprises to move their business to the cloud because of the associated operational and cost benefits. Improving availability is one of the major concerns of cloud application owners because modern applications generally comprise a large number of components and failures are common at scale. Fault tolerance enables an application to continue operating properly when failure occurs, but fault tolerance strategy is typically employed for the most important components because of financial concerns. Therefore, identifying important components has become a critical research issue. To address this problem, we propose a failure-sensitive structure-based component ranking approach (FSCRank), which integrates component failure impact and application structure information into component importance evaluation. An iterative ranking algorithm is developed according to the structural characteristics of cloud applications. The experimental results show that FSCRank outperforms the other two structure-based ranking algorithms for cloud applications. In addition, factors that affect application availability optimization are analyzed and summarized. The experimental results suggest that the availability of cloud applications can be greatly improved by implementing fault tolerance strategy for the important components identified by FSCRank.

  • Design of CPM-PNC Using the Titled-Phase Model over AWGN Channels

    Nan SHA  Mingxi GUO  Yuanyuan GAO  Lihua CHEN  Kui XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:2
      Page(s):
    476-479

    In this letter, a physical-layer network coding (PNC) scheme based on continuous phase modulation (CPM) signal using the titled-phase model, i.e., TIP-CPM-PNC, is presented, and the combined titled-phase state trellis for the superimposed CPM signal in TIP-CPM-PNC is discussed. Simulation results show that the proposed scheme with low decoding complexity can achieve the same error performance as CPM-PNC using the traditional-phase model.

  • Neural Oscillation-Based Classification of Japanese Spoken Sentences During Speech Perception

    Hiroki WATANABE  Hiroki TANAKA  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2018/11/14
      Vol:
    E102-D No:2
      Page(s):
    383-391

    Brain-computer interfaces (BCIs) have been used by users to convey their intentions directly with brain signals. For example, a spelling system that uses EEGs allows letters on a display to be selected. In comparison, previous studies have investigated decoding speech information such as syllables, words from single-trial brain signals during speech comprehension, or articulatory imagination. Such decoding realizes speech recognition with a relatively short time-lag and without relying on a display. Previous magnetoencephalogram (MEG) research showed that a template matching method could be used to classify three English sentences by using phase patterns in theta oscillations. This method is based on the synchronization between speech rhythms and neural oscillations during speech processing, that is, theta oscillations synchronized with syllabic rhythms and low-gamma oscillations with phonemic rhythms. The present study aimed to approximate this classification method to a BCI application. To this end, (1) we investigated the performance of the EEG-based classification of three Japanese sentences and (2) evaluated the generalizability of our models to other different users. For the purpose of improving accuracy, (3) we investigated the performances of four classifiers: template matching (baseline), logistic regression, support vector machine, and random forest. In addition, (4) we propose using novel features including phase patterns in a higher frequency range. Our proposed features were constructed in order to capture synchronization in a low-gamma band, that is, (i) phases in EEG oscillations in the range of 2-50 Hz from all electrodes used for measuring EEG data (all) and (ii) phases selected on the basis of feature importance (selected). The classification results showed that, except for random forest, most classifiers perform similarly. Our proposed features improved the classification accuracy with statistical significance compared with a baseline feature, which is a phase pattern in neural oscillations in the range of 4-8 Hz from the right hemisphere. The best mean accuracy across folds was 55.9% using template matching trained by all features. We concluded that the use of phase information in a higher frequency band improves the performance of EEG-based sentence classification and that this model is applicable to other different users.

  • Specific Properties of the Computation Process by a Turing Machine on the Game of Life

    Shigeru NINAGAWA  

     
    PAPER-Nonlinear Problems

      Vol:
    E102-A No:2
      Page(s):
    415-422

    The Game of Life, a two-dimensional computationally universal cellular automaton, is known to exhibits 1/f noise in the evolutions starting from random configurations. In this paper we perform the spectral analysis on the computation process by a Turing machine constructed on the array of the Game of Life. As a result, the power spectrum averaged over the whole array has almost flat line at low frequencies and a lot of sharp peaks at high frequencies although some regions in which complicated behavior such as frequent memory rewriting occurs exhibit 1/f noise. This singular power spectrum is, however, easily turned into 1/f by slightly deforming the initial configuration of the Turing machine. These results emphasize the peculiarity of the computation process on the Game of Life that is never shared with the evolutions from random configurations. The Lyapunov exponents have positive values in three out of six trials and zero or negative values in other three trails. That means the computation process is essentially chaotic but it has capable of recovering a slight error in the configuration of the Turing machine.

  • Characterizing Link-2 LR-Visibility Polygons and Related Problems

    Xuehou TAN  Bo JIANG  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E102-A No:2
      Page(s):
    423-429

    Two points x, y inside a simple polygon P are said to be mutually link-2 visible if there exists the third point z ∈ P such that z is visible from both x and y. The polygon P is link-2 LR-visible if there are two points s, t on the boundary of P such that every point on the clockwise boundary of P from s to t is link-2 visible from some point of the other boundary of P from t to s and vice versa. We give a characterization of link-2 LR-visibility polygons by generalizing the known result on LR-visibility polygons. A new idea is to extend the concepts of ray-shootings and components to those under notion of link-2 visibility. Then, we develop an O(n log n) time algorithm to determine whether a given polygon is link-2 LR-visible. Using the characterization of link-2 LR-visibility polygons, we further present an O(n log n) time algorithm for determining whether a polygonal region is searchable by a k-searcher, k ≥ 2. This improves upon the previous O(n2) time bound [9]. A polygonal region P is said to be searchable by a searcher if the searcher can detect (or see) an unpredictable intruder inside the region, no matter how fast the intruder moves. A k-searcher holds k flashlights and can see only along the rays of the flashlights emanating from his position.

  • A Universal Two-Dimensional Source Coding by Means of Subblock Enumeration Open Access

    Takahiro OTA  Hiroyoshi MORITA  Akiko MANADA  

     
    PAPER-Information Theory

      Vol:
    E102-A No:2
      Page(s):
    440-449

    The technique of lossless compression via substring enumeration (CSE) is a kind of enumerative code and uses a probabilistic model built from the circular string of an input source for encoding a one-dimensional (1D) source. CSE is applicable to two-dimensional (2D) sources, such as images, by dealing with a line of pixels of a 2D source as a symbol of an extended alphabet. At the initial step of CSE encoding process, we need to output the number of occurrences of all symbols of the extended alphabet, so that the time complexity increases exponentially when the size of source becomes large. To reduce computational time, we can rearrange pixels of a 2D source into a 1D source string along a space-filling curve like a Hilbert curve. However, information on adjacent cells in a 2D source may be lost in the conversion. To reduce the time complexity and compress a 2D source without converting to a 1D source, we propose a new CSE which can encode a 2D source in a block-by-block fashion instead of in a line-by-line fashion. The proposed algorithm uses the flat torus of an input 2D source as a probabilistic model instead of the circular string of the source. Moreover, we prove the asymptotic optimality of the proposed algorithm for 2D general sources.

  • Coaxially Fed Antenna Composed of Monopole and Choke Structure Using Two Different Configurations of Composite Right/Left-Handed Coaxial Lines

    Takatsugu FUKUSHIMA  Naobumi MICHISHITA  Hisashi MORISHITA  Naoya FUJIMOTO  

     
    PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    205-215

    Two kinds of composite right/left-handed coaxial lines (CRLH CLs) are designed for an antenna element. The dispersion relations of the infinite periodic CRLH CLs are designed to occur -1st resonance at around 700 MHz, respectively. The designed CRLH CLs comprise a monopole and a choke structure for antenna elements. To verify the resonant modes and frequencies, the monopole structure, the choke structure, and the antenna element which is combined the monopole and the choke structures are simulated by eigenmode analysis. The resonant frequencies correspond to the dispersion relations. The monopole and the choke structures are applied to the coaxially fed antenna. The proposed antenna matches at 710 MHz and radiates. At the resonant frequency, the total length of the proposed antenna which is the length of the monopole structure plus the choke structure is 0.12 wavelength. The characteristics of the proposed antenna has been compared with that of the conventional coaxially fed monopole antenna without the choke structure and the sleeve antenna with the quarter-wavelength choke structure. The radiation pattern of the proposed antenna is omnidirectional, the total antenna efficiency is 0.73 at resonant frequencies, and leakage current is suppressed lesser than -10 dB at resonant frequency. The propose antenna is fabricated and measured. The measured |S11| characteristics, radiation patterns, and the total antenna efficiency are in good agreement with the simulated results.

  • Introduction to Electromagnetic Information Security Open Access

    Yu-ichi HAYASHI  Naofumi HOMMA  

     
    INVITED SURVEY PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/08/17
      Vol:
    E102-B No:1
      Page(s):
    40-50

    With the rising importance of information security, the necessity of implementing better security measures in the physical layer as well as the upper layers is becoming increasing apparent. Given the development of more accurate and less expensive measurement devices, high-performance computers, and larger storage devices, the threat of advanced attacks at the physical level has expanded from the military and governmental spheres to commercial products. In this paper, we review the issue of information security degradation through electromagnetic (EM)-based compromising of security measures in the physical layer (i.e., EM information security). Owing to the invisibility of EM radiation, such attacks can be serious threats. We first introduce the mechanism of information leakage through EM radiation and interference and then present possible countermeasures. Finally, we explain the latest research and standardization trends related to EM information security.

  • Traffic Engineering and Traffic Monitoring in the Case of Incomplete Information

    Kodai SATAKE  Tatsuya OTOSHI  Yuichi OHSITA  Masayuki MURATA  

     
    PAPER-Network

      Pubricized:
    2018/07/23
      Vol:
    E102-B No:1
      Page(s):
    111-121

    Traffic engineering refers to techniques to accommodate traffic efficiently by dynamically configuring traffic routes so as to adjust to changes in traffic. If traffic changes frequently and drastically, the interval of route reconfiguration should be short. However, with shorter intervals, obtaining traffic information is problematic. To calculate a suitable route, accurate traffic information of the whole network must be gathered. This is difficult in short intervals, owing to the overhead incurred to monitor and collect traffic information. In this paper, we propose a framework for traffic engineering in cases where only partial traffic information can be obtained in each time slot. The proposed framework is inspired by the human brain, and uses conditional probability to make decisions. In this framework, a controller is deployed to (1) obtain a limited amount of traffic information, (2) estimate and predict the probability distribution of the traffic, (3) configure routes considering the probability distribution of future predicted traffic, and (4) select traffic that should be monitored during the next period considering the system performance yielded by route reconfiguration. We evaluate our framework with a simulation. The results demonstrate that our framework improves the efficiency of traffic accommodation even when only partial traffic information is monitored during each time slot.

  • Elliptic Curve Method Using Complex Multiplication Method Open Access

    Yusuke AIKAWA  Koji NUIDA  Masaaki SHIRASE  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    74-80

    In 2017, Shirase proposed a variant of Elliptic Curve Method combined with Complex Multiplication method for generating certain special kinds of elliptic curves. His algorithm can efficiently factorize a given composite integer when it has a prime factor p of the form 4p=1+Dv2 for some integer v, where -D is an auxiliary input integer called a discriminant. However, there is a disadvantage that the previous method works only for restricted cases where the class polynomial associated to -D has degree at most two. In this paper, we propose a generalization of the previous algorithm to the cases of class polynomials having arbitrary degrees, which enlarges the class of composite integers factorizable by our algorithm. We also extend the algorithm to more various cases where we have 4p=t2+Dv2 and p+1-t is a smooth integer.

  • The PRF Security of Compression-Function-Based MAC Functions in the Multi-User Setting Open Access

    Shoichi HIROSE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:1
      Page(s):
    270-277

    A compression-function-based MAC function called FMAC was presented as well as a vector-input PRF called vFMAC in 2016. They were proven to be secure PRFs on the assumption that their compression function is a secure PRF against related-key attacks with respect to their non-cryptographic permutations in the single user setting. In this paper, it is shown that both FMAC and vFMAC are also secure PRFs in the multi-user setting on the same assumption as in the single user setting. These results imply that their security in the multi-user setting does not degrade with the number of the users and is as good as in the single user setting.

  • Hybrid BD-GMD Precoding for Multiuser Millimeter-Wave Massive MIMO Systems

    Wei WU  Danpu LIU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/06/27
      Vol:
    E102-B No:1
      Page(s):
    63-75

    The potential for using millimeter-wave (mmWave) frequencies in future 5G wireless cellular communication systems has motivated the study of large-scale antenna arrays to achieve highly directional beamforming. However, the conventional fully digital beamforming (DBF) methods which require one radio frequency (RF) chain per antenna element are not viable for large-scale antenna arrays due to the high cost and large power consumption of high frequency RF chain components. Hybrid precoding can significantly reduce the number of required RF chains and relieve the huge power consumption in mmWave massive multiple-input multiple-output (MIMO) systems, thus attracting much interests from academic and industry. In this paper, we consider the downlink communication of a massive multiuser MIMO (MU-MIMO) system in the mmWave channel, and propose a low complexity hybrid block diagonal geometric mean decomposition (BD-GMD) scheme. More specially, a joint transmit-receive (Tx-Rx) analog beamforming with large-scale arrays is proposed to improve channel gain, and then a low-dimensional BD-GMD approach is implemented at the equivalent baseband channel to mitigate the inter-user interference and equalize different data streams of each user. With the help of successive interference cancellation (SIC) at the receiver, we can decompose each user's MIMO channel into parallel sub-channels with identical higher SNRs/SINRs, thus equal-rate coding can be applied across the sub-channels of each user. Finally, simulation results verify that the proposed hybrid BD-GMD precoding scheme outperforms existing conventional fully digital and hybrid precoding schemes and is able to achieve much better BER performance.

  • Design of High-Speed Easy-to-Expand CC-Link Parallel Communication Module Based on R-IN32M3

    Yeong-Mo YEON  Seung-Hee KIM  

     
    PAPER-Information Network

      Pubricized:
    2018/10/09
      Vol:
    E102-D No:1
      Page(s):
    116-123

    The CC-Link proposed by the Mitsubishi Electric Company is an industrial network used exclusively in most industries. However, the probabilities of data loss and interference with equipment control increase if the transmission time is greater than the link scan time of 381µs. The link scan time can be reduced by designing the CC-Link module as an external microprocessor (MPU) interface of R-IN32M3; however, it then suffers from expandability issues. Thus, in this paper, we propose a new CC-Link module utilizing R-IN32M3 to improve the expandability. In our designed CC-Link module, we devise a dual-port RAM (DPRAM) function in an external I/O module, which enables parallel communication between the DPRAM and the external MPU. Our experiment with the implemented CC-Link prototype demonstrates that our CC-Link design improves the communication speed owing to the parallel communication between DPRAM and external MPU, and expandability of remote I/O. Our design achieves miniaturization of the CC-Link module, wiring reduction, and an approximately 30% reduction in the link scan time. Furthermore, because we utilize both the Renesas R-IN32M3 and Xilinx XC95144XL chips widely used in diverse application areas, the designed CC-Link module reduces the investment cost. The proposed design is expected to significantly contribute to the utilization of the programmable logic controller memory and I/O expansion for factory automation and improvement of the investment efficiency in the flat panel display industry.

481-500hit(3945hit)