The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

3581-3600hit(6809hit)

  • Performance Improvement of RoF Ubiquitous Antenna System Using Sub-Carrier Resource Management

    Hong Hai LUONG  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    373-380

    This paper proposes new resource management schemes for multiple data streams in an orthogonal frequency and space division multiplex access (OFSDMA) system using Radio-on-Fiber (RoF) ubiquitous antennas. The proposed schemes classify the services into some classes in which the number of sub-carriers is dynamically assigned according to the requested data size. The computer simulation results show that the proposed schemes improve the number of users satisfying the required bit error rate (BER) level as well as the average throughput and also show that the RoF ubiquitous antennas can improve system capacity.

  • Crosstalk Analysis for Two Bent Lines Using Circuit Model

    Sang Wook PARK  Fengchao XIAO  Dong Chul PARK  Yoshio KAMI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E90-B No:2
      Page(s):
    323-330

    The crosstalk phenomenon, wich occurs between transmission lines, is caused by electromagnetic fields of currents flowing through the lines. Crosstalk between two bent lines is studied by using a set of solutions of modified telegrapher's equations. By expressing electromagnetic fields in terms of voltages and currents in the line ends, the resultant network function in the form of an ABCD matrix is obtained. Electromagnetic fields caused by currents flowing in risers at transmission line ends are taken into account in addition to those fields in line sections. The validity of the proposed approach was confirmed by comparing experimental results with computed results and those simulated by a commercial electromagnetic solver for some bent-line models.

  • A 5.2 GHz 47 dB Image Rejection Double Quadrature Gilbert Downconverter Using 0.35 µm SiGe HBT Technology

    Tzung-Han WU  Chinchun MENG  Tse-Hung WU  Guo-Wei HUANG  

     
    LETTER

      Vol:
    E90-A No:2
      Page(s):
    401-405

    A 5.2 GHz 1 dB conversion gain, IP1 dB = -19 dBm and IIP3= -9 dBm double quadrature Gilbert downconversion mixer with polyphase filters is demonstrated by using 0.35 µm SiGe HBT technology. The image rejection ratio is better than 47 dB when LO=5.17 GHz and IF is in the range of 15 MHz to 45 MHz. The Gilbert downconverter has four-stage RC-CR IF polyphase filters for the image rejection. Polyphase filters are also used to generate LO and RF quadrature signals around 5 GHz in the double quadrature downconverter.

  • Spice-Oriented Frequency-Domain Analysis of Nonlinear Electronic Circuits

    Junji KAWATA  Yousuke TANIGUCHI  Masayoshi ODA  Yoshihiro YAMAGAMI  Yoshifumi NISHIO  Akio USHIDA  

     
    LETTER

      Vol:
    E90-A No:2
      Page(s):
    406-410

    Distortion analysis of nonlinear circuits is very important for designing analog integrated circuits and communication systems. In this letter, we propose an efficient frequency-domain approach for calculating frequency response curves, which is based on HB (harmonic balance) method combining with ABMs (Analog Behavior Models) of Spice. Firstly, nonlinear devices such as bipolar transistors and MOSFETs are transformed into the HB device modules executing the Fourier transformations. Using these modules, the determining equation of the HB method is formed by the equivalent sine-cosine circuit in the schematic form or net-list. It consists of the coupled resistive circuits, so that it can be efficiently solved by the DC analysis of Spice. In our algorithm, we need not to derive any troublesome circuit equations, and any kinds of the transformations.

  • UTC-PD-Based Optoelectronic Components for High-Frequency and High-Speed Applications

    Satoshi KODAMA  Hiroshi ITO  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    429-435

    The uni-traveling-carrier photodiode (UTC-PD) is an innovative PD that has a unique operation mode in which only electrons act as the active carriers, resulting in ultrafast response and high electrical output power at the same time. This paper describes the features of the UTC-PD and its excellent performance. In addition, UTC-PD-based optoelectronic devices integrated with various elements, such as passive and active devices, are presented. These devices are promising for various applications, such as millimeter- and submillimeter-wave generation up to the terahertz range and ultrafast optical signal processing at data rates of up to 320 Gbit/s.

  • Non-resonant Electromagnetic Scattering Properties of Menger's Sponge Composed of Isotropic Paraelectric Material

    Ushio SANGAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E90-C No:2
      Page(s):
    484-491

    Menger's sponge (MS) is a kind of three-dimensional fractal structure. To analyze non-resonant electromagnetic properties of MS composed of isotropic paraelectric material, a novel, high-speed computation method employing simple recursion equations in terms of scattering amplitudes for two MS's with adjacent stage numbers, which are the parameters describing structural differences of MS's, is formulated. Within the scope of non-resonant electromagnetic phenomena, scattering patterns, forward and backward scattering amplitudes, and total cross sections of MS are investigated as a function of stage number and incident plane waves, and behaviors typical to fractal structures are extracted from the numerical results of the above equations. In addition, scattering properties at infinite stage number are discussed.

  • An Energy Efficient Data Query Architecture for Large Scale Sensor Networks

    Ruay-Shiung CHANG  An-Chin LEE  

     
    PAPER-Network

      Vol:
    E90-B No:2
      Page(s):
    217-227

    With the advances of micro-electronic and wireless communication technology, deploying a large number of low cost, small-sized sensor nodes over a vast area for environment monitoring is becoming more practical. Setting up gradients for delivering queries or data reports by flooding the sensor networks consumes a great deal of energy especially for large scale sensor networks. In this paper, we propose an energy conserving observer-initiated data dissemination protocol, called Grid Map Data Query Protocol (GMDQP), for multiple mobile sinks on a large scale sensor network. It conserves communication energy by employing a grid map data query technique to avoid full network events or queries flooding. A data source only announces the existence of data within a local area and a sink collects data by sending query message in a grid map. Nodes at cross point of grid check and query the data. It conserves energy by avoiding full network flooding in setting up data forwarding path. Simulations show that the proposed architecture is quite energy efficient.

  • Evaluation of Isolation Structures against High-Frequency Substrate Coupling in Analog/Mixed-Signal Integrated Circuits

    Daisuke KOSAKA  Makoto NAGATA  Yoshitaka MURASAKA  Atsushi IWATA  

     
    PAPER

      Vol:
    E90-A No:2
      Page(s):
    380-387

    Substrate-coupling equivalent circuits can be derived for arbitrary isolation structures by F-matrix computation. The derived netlist represents a unified impedance network among multiple sites on a chip surface as well as internal nodes of isolation structures and can be applied with SPICE simulation to evaluate isolation strengths. Geometry dependency of isolation attributes to layout parameters such as area, width, and location distance. On the other hand, structural dependency arises from vertical impurity concentration specific to p+/n+ diffusion and deep n-well. Simulation-based prototyping of isolation structures can include all these dependences and strongly helps establish an isolation strategy against high-frequency substrate coupling in a given technology. The analysis of isolation strength provided by p+/n+ guard ring, deep n-well guard ring as well as deep n-well pocket well explains S21 measurements performed on high-frequency test structures targeting 5 GHz bandwidth, that was formed in a 0.25-µm CMOS high frequency.

  • Security Analysis of Authenticated Key Exchange Protocol Based on the q-th Root Problem

    Kyung-Ah SHIM  

     
    LETTER

      Vol:
    E90-A No:1
      Page(s):
    231-233

    Johnston and Gemmell proposed an authenticated key exchange protocol based on the difficulty of the q-th root problem. They showed that it is provably secure against man-in-the-middle attacks. In this paper we show that the protocol is insecure against an unknown key-share attack and does not achieve forward secrecy.

  • Cross-Correlation Properties of Cyclotomic Sequences

    Kai CAI  Rongquan FENG  Zhiming ZHENG  

     
    PAPER-Coding Theory

      Vol:
    E90-A No:1
      Page(s):
    281-286

    Sequences with good correlation properties are widely used in engineering applications, especially in the area of communications. Among the known sequences, cyclotomic families have the optimal autocorrelation property. In this paper, we decide the cross-correlation function of the known cyclotomic sequences completely. Moreover, to get our results, the relations between the multiplier group and the decimations of the characteristic sequence are also established for an arbitrary difference set.

  • New Construction for Balanced Boolean Functions with Very High Nonlinearity

    Khoongming KHOO  Guang GONG  

     
    PAPER-Symmetric Cryptography

      Vol:
    E90-A No:1
      Page(s):
    29-35

    In the past twenty years, there were only a few constructions for Boolean functions with nonlinearity exceeding the quadratic bound 2n-1-2(n-1)/2 when n is odd (we shall call them Boolean functions with very high nonlinearity). The first basic construction was by Patterson and Wiedemann in 1983, which produced unbalanced function with very high nonlinearity. But for cryptographic applications, we need balanced Boolean functions. Therefore in 1993, Seberry, Zhang and Zheng proposed a secondary construction for balanced functions with very high nonlinearity by taking the direct sum of a modified bent function with the Patterson-Wiedemann function. Later in 2000, Sarkar and Maitra constructed such functions by taking the direct sum of a bent function with a modified Patterson-Wiedemann function. In this paper, we propose a new secondary construction for balanced Boolean functions with very high nonlinearity by recursively composing balanced functions with very high nonlinearity with quadratic functions. This is the first construction for balanced function with very high nonlinearity not based on the direct sum approach. Our construction also have other desirable properties like high algebraic degree and large linear span.

  • Two-Band Excitation for HMM-Based Speech Synthesis

    Sang-Jin KIM  Minsoo HAHN  

     
    LETTER-Speech and Hearing

      Vol:
    E90-D No:1
      Page(s):
    378-381

    This letter describes a two-band excitation model for HMM-based speech synthesis. The HMM-based speech synthesis system generates speech from the HMM training data of the spectral and excitation parameters. Synthesized speech has a typical quality of "vocoded sound" mostly because of the simple excitation model with the voiced/unvoiced selection. In this letter, two-band excitation based on the harmonic plus noise speech model is proposed for generating the mixed excitation source. With this model, we can generate the mixed excitation more accurately and reduce the memory for the trained excitation data as well.

  • Free Iris and Focus Image Generation by Merging Multiple Differently Focused Images Based on a Three-Dimensional Filtering

    Kazuya KODAMA  Akira KUBOTA  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    191-198

    This paper describes a method of free iris and focus image generation based on transformation integrating multiple differently focused images. First, we assume that objects are defocused by a geometrical blurring model. And we combine acquired images on certain imaging planes and spatial information of objects by using a convolution of a three-dimensional blur. Then, based on spatial frequency analysis of the blur, we design three-dimensional filters that generate free iris and focus images from the acquired images. The method enables us to generate not only an all-in-focus image corresponding to an ideal pin-hole iris but also various images, which would be acquired with virtual irises whose sizes are different from the original one. In order to generate a certain image by using multiple differently focused images, especially very many images, conventional methods usually analyze focused regions of each acquired image independently and construct a depth map. Then, based on the map, the regions are merged into a desired image with some effects. However, generally, it is so difficult to conduct such depth estimation robustly in all regions that these methods cannot prevent merged results from including visible artifacts, which decrease the quality of generated images awfully. In this paper, we propose a method of generating desired images directly and robustly from very many differently focused images without depth estimation. Simulations of image generation are performed utilizing synthetic images to study how certain parameters of the blur and the filter affect the quality of generated images. We also introduce pre-processing that corrects the size of acquired images and a simple method for estimating the parameter of the three-dimensional blur. Finally, we show experimental results of free iris and focus image generation from real images.

  • Accurate Thickness Measurement of Two Adjacent Sheet Structures in CT Images

    Yuanzhi CHENG  Yoshinobu SATO  Hisashi TANAKA  Takashi NISHII  Nobuhiko SUGANO  Hironobu NAKAMURA  Hideki YOSHIKAWA  Shuguo WANG  Shinichi TAMURA  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    271-282

    Accurate thickness measurement of sheet-like structure such as articular cartilage in CT images is required in clinical diagnosis as well as in fundamental research. Using a conventional measurement method based on the zero-crossing edge detection (zero-crossings method), several studies have already analyzed the accuracy limitation on thickness measurement of the single sheet structure that is not influenced by peripheral structures. However, no studies, as of yet, have assessed measurement accuracy of two adjacent sheet structures such as femoral and acetabular cartilages in the hip joint. In this paper, we present a model of the CT scanning process of two parallel sheet structures separated by a small distance, and use the model to predict the shape of the gray-level profiles along the sheet normal orientation. The difference between the predicted and the actual gray-level profiles observed in the CT data is minimized by refining the model parameters. Both a one-by-one search (exhaustive combination search) technique and a nonlinear optimization technique based on the Levenberg-Marquardt algorithm are used to minimize the difference. Using CT images of phantoms, we present results showing that when applying the one-by-one search method to obtain the initial values of the model parameters, Levenberg-Marquardt method is more accurate than zero-crossings and one-by-one search methods for estimating the thickness of two adjacent sheet structures, as well as the thickness of a single sheet structure.

  • Acceleration of Test Generation for Sequential Circuits Using Knowledge Obtained from Synthesis for Testability

    Masato NAKAZATO  Satoshi OHTAKE  Kewal K. SALUJA  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E90-D No:1
      Page(s):
    296-305

    In this paper, we propose a method of accelerating test generation for sequential circuits by using the knowledge about the availability of state justification sequences, the bound on the length of state distinguishing sequences, differentiation between valid and invalid states, and the existence of a reset state. We also propose a method of synthesis for testability (SfT) which takes the features of our test generation method into consideration to synthesize sequential circuits from given FSM descriptions. The SfT method guarantees that the test generator will be able to find a state distinguishing sequence. The proposed method extracts the state justification sequence from the FSM produced by the synthesizer to improve the performance of its test generation process. Experimental results show that the proposed method can achieve 100% fault efficiency in relatively short test generation time.

  • Digital Content Creation/Distribution in a Broadband-Ubiquitous Environment

    Hiroshi YASUDA  

     
    INVITED PAPER

      Vol:
    E90-D No:1
      Page(s):
    76-80

    Under the broadband-ubiquitous environment, digital content creation/distribution will be the key factor to activating new industries. This paper first describes the impact of a broadband-ubiquitous environment on digital content creation/distribution; then it proposes new models for digital content creation/distribution businesses. In a broadband-ubiquitous environment, the key is creation of moving picture content; thus the paper describes a system that allows non-CG experts to make CG movies easily.

  • Estimation for Instantaneous Frequency Using a Combined Fractional Time-Frequency Representation

    Jiaqiang LI  Ronghong JIN  JunPing GENG  

     
    LETTER-Sensing

      Vol:
    E90-B No:1
      Page(s):
    189-191

    In this letter, a combined method based on the fractional linear and the fractional bilinear time-frequency representations (TFRs) is proposed. The method combines the windowed fractional short-time Fourier transform with the fractional Wigner distribution (WD) to estimate the instantaneous frequency (IF) of signals in the appropriate fractional time-frequency domain. For a multi-component signal, the method can significantly eliminate the cross terms and improve the time-frequency resolution of the auto-terms. It is applied to the detection and parameter estimation of linear frequency modulated (LFM) signals. The computer simulations clearly demonstrate that the method is effective.

  • The Design of Square-Root-Raised-Cosine FIR Filters by an Iterative Technique

    Chia-Yu YAO  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:1
      Page(s):
    241-248

    Using a pair of matched square-root-raised-cosine (SRRC) filters in the transmitter and the receiver in a band-limited digital communication system can theoretically achieve zero inter-symbol interference (ISI). In reality, the ISI cannot be zero when both SRRC filters are approximately implemented because of some numerical precision problems in the design phase as well as in the implementation phase. In this paper, the author proposes an iterative method to design the coefficients of SRRC FIR filters. The required ISI of the system can be specified such that both ISI and frequency domain specifications are monitored in the design phase. Since the ISI can be specified beforehand, the tradeoff between performance and the filter length becomes possible in the proposed design algorithm.

  • Diffusion-Type Autonomous Decentralized Flow Control for Multiple Flows

    Chisa TAKANO  Masaki AIDA  

     
    PAPER-Network

      Vol:
    E90-B No:1
      Page(s):
    21-30

    We have proposed a diffusion-type flow control mechanism to achieve the extremely time-sensitive flow control required for high-speed networks. In this mechanism, each node in a network manages its local traffic flow only on the basis of the local information directly available to it, by using predetermined rules. In this way, the implementation of decision-making at each node can lead to optimal performance for the whole network. Our previous studies concentrated on the flow control for a single flow. In this paper, we propose a diffusion-type flow control mechanism for multiple flows. The proposed scheme enables a network to quickly recover from a state of congestion and to achieve fairness among flows.

  • Performance Analysis of a Non-Uniform DMT Transceiver in Digital Subscriber Line

    Sobia BAIG  Muhammad Junaid MUGHAL  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E90-B No:1
      Page(s):
    140-143

    A Non-Uniform Discrete Multitone (DMT) transceiver employing an octave spaced quadrature mirror filter (QMF) bank, can be used to overcome the problem of channel noise enhancement in the zero-forcing (ZF) equalization technique. In this letter, performance of the Non-Uniform DMT system is analyzed. A study of the crosstalk between sub-channels due to non-ideal filter banks is also presented. Crosstalk analysis is based upon the bit error rate (BER) performance versus the QMF order in a standadard ADSL channel. Performance comparison of the Non-Uniform DMT transceiver and a conventional DMT system is given, and it is shown that the Non-Uniform DMT transceiver displays slight improvement over the conventional DMT system for the filters of higher order.

3581-3600hit(6809hit)