The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

4261-4280hit(6809hit)

  • Complex Hadamard Codes

    WenPing MA  MoonHo LEE  

     
    LETTER-Coding Theory

      Vol:
    E88-A No:1
      Page(s):
    396-398

    In this letter, a method to construct good binary and quaternary error correcting codes, called complex Hadamard codes, based on a complex Hadamard matrix is presented. The related properties of the codes are analyzed. In addition, through the operation in Z4 domain, a new simplex soft-decision decoding algorithm for the complex Hadamard codes is also proposed.

  • Transient Scattering from Parallel Plate Waveguide Cavities

    Shinichiro OHNUKI  Takashi HINATA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:1
      Page(s):
    112-118

    Transient scattering from parallel plate waveguide cavities is studied by using the combination of a point matching technique and numerical inversion of Laplace transform. We thoroughly investigate the scattering mechanism for a half-sine pulse and modulated-sine pulse incidence. The advantages and disadvantages on the target recognition are clarified in terms of the internal objects, incident waveforms, and polarizations.

  • OFDM Mobile Packet Transmission System with Multiuser Detection and Metric Combining ARQ

    Riichiro NAGAREDA  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER-Interference Canceller

      Vol:
    E88-B No:1
      Page(s):
    106-114

    This paper proposes an OFDM mobile packet transmission scheme that increases throughput by using nonlinear multiuser detection (MUD) and automatic repeat request (ARQ) with metric-combining. The scheme identifies users by detecting user identification (ID) symbols located at the head of a packet, and can separate packets that have collided by using MUD. It also forces the respective transmitters to retransmit the same packets so as to reproduce the collision if the cyclic redundancy check (CRC) detects some errors, and it uses metric-combining to decrease the number of retransmissions. The results of computer simulations show that the proposed scheme can provide twice the throughput of the conventional schemes.

  • Blocking Probability Calculation Using Traffic Equivalent Distributions in SIR-Based Power Controlled W-CDMA Cellular Systems

    Yoshihiro ISHIKAWA  Seizo ONOE  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:1
      Page(s):
    312-324

    In W-CDMA systems, distributions of the interference power and the total transmit power both measured at base stations are respectively used for capacity analysis in the uplink and downlink. For accurate capacity analysis, these quantities must be in proportion to the traffic amount. However, these quantities are no longer in proportion to the traffic amount since the transmit power control maintains the signal to interference power ratio at a constant level. Although the relationship between these measurements and the traffic amount has been investigated, there are still challenges to calculate the statistics such as the blocking probability or the outage probability accurately. This paper proposes a method to calculate the blocking probability by transforming the distributions of these measurements into distributions that are referred to as "traffic equivalent distributions," where the distributions are automatically adjusted according to the traffic amount. The calculated results show good agreement with the results obtained by dynamic computer simulations in the uplink, and show good agreement in the downlink as well when the traffic load is light. Accurate calculation of the blocking probability using a feedback loop and the observation of the traffic equivalents is also reported.

  • Effect of a Multi-Band OFDM-MIMO System on Frequency-Selective Propagation Characteristics

    Mitsugu OHKAWA  Ryuji KOHNO  

     
    PAPER-MIMO

      Vol:
    E88-B No:1
      Page(s):
    19-27

    A multi-band OFDM-MIMO system, in which the multi-band OFDM method is combined with the MIMO concept, has been developed. In this system, the spectra of multi-band OFDM signals are adaptively shared to improve the path gain for MIMO multiple transmission. The OFDM signal is divided into multi-bands, and the divided signals are transmitted on an appropriate beam in each multi-band. Multi-band transmission improves the overall transmission capacity by reducing the degradation of frequency-selective channels. In this paper, we report on our evaluation of the multi-band OFDM-MIMO system with frequency-selective fading channels.

  • Likelihood Function for QRM-MLD Suitable for Soft-Decision Turbo Decoding and Its Performance for OFCDM MIMO Multiplexing in Multipath Fading Channel

    Hiroyuki KAWAI  Kenichi HIGUCHI  Noriyuki MAEDA  Mamoru SAWAHASHI  Takumi ITO  Yoshikazu KAKURA  Akihisa USHIROKAWA  Hiroyuki SEKI  

     
    PAPER-MIMO

      Vol:
    E88-B No:1
      Page(s):
    47-57

    This paper proposes likelihood function generation of complexity-reduced Maximum Likelihood Detection with QR Decomposition and M-algorithm (QRM-MLD) suitable for soft-decision Turbo decoding and investigates the throughput performance using QRM-MLD with the proposed likelihood function in multipath Rayleigh fading channels for Orthogonal Frequency and Code Division Multiplexing (OFCDM) multiple-input multiple-output (MIMO) multiplexing. Simulation results show that by using the proposed likelihood function generation scheme for soft-decision Turbo decoding following QRM-MLD in 4-by-4 MIMO multiplexing, the required average received signal energy per bit-to-noise power spectrum density ratio (Eb/N0) at the average block error rate (BLER) of 10-2 at a 1-Gbps data rate is significantly reduced compared to that using hard-decision decoding in OFCDM access with 16 QAM modulation, the coding rate of 8/9, and 8-code multiplexing with a spreading factor of 8 assuming a 100-MHz bandwidth. Furthermore, we show that by employing QRM-MLD associated with soft-decision Turbo decoding for 4-by-4 MIMO multiplexing, the throughput values of 500 Mbps and 1 Gbps are achieved at the average received Eb/N0 of approximately 4.5 and 9.3 dB by QPSK with the coding rate of R = 8/9 and 16QAM with R = 8/9, respectively, for OFCDM access assuming a 100-MHz bandwidth in a twelve-path Rayleigh fading channel.

  • Differentiated Scheduling for Bluetooth QoS with Parameter Optimization

    Yang-Ick JOO  Tae-Jin LEE  Doo Seop EOM  Kyun Hyon TCHAH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:1
      Page(s):
    274-281

    This paper considers an efficient scheduling policy for Bluetooth Medium Access Control (MAC) and its parameter optimization method. The proposed algorithm improves performance as well as supports Quality of Service (QoS) simultaneously. Since Bluetooth is basically operated with a Round Robin (RR) scheduling policy, many slots may be wasted by POLL or NULL packets when there is no data waiting for transmission in the queues of the polled pair. To overcome this link wastage problem, several algorithms have been proposed. However, they have some limitations such as a heavy signaling overhead or no consideration of QoS. Therefore, we have proposed an efficient Bluetooth MAC scheduling algorithm, Differentiated K-Fairness Policy (Diff-KFP), which guarantees improved throughput and delay performance, and it can also lead to differentiated services. That is, if the parameter of the proposed algorithm is optimized, we can satisfy the QoS requirement of each master-slave pair and thereby keep communications in progress from interruption, which is a source of throughput degradation. Simulation results show that our algorithm has remarkably improved the performance and gratifies the QoS requirements of various applications.

  • Crest Factor Reduction for Complex Multi-Carrier Signal Processing

    Young-Hwan YOU  Min-Goo KANG  Han-Jong KIM  Pan-Yuh JOO  Hyoung-Kyu SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E88-A No:1
      Page(s):
    378-380

    One of the main disadvantage of multi-carrier CDMA (MC-CDMA) signals is the high peak power of the transmitted signals which limits their applications. To account for this issue, we provide a simple signal processing for reducing the high crest factor (CF) of MC-CDMA signals. Using this modified MC-CDMA signal, the high CF due to Walsh spreading sequences can be mitigated without explicit side information and degradation in the detection performance.

  • Parameter Acquisition Techniques for Multiuser Detection with ISI Cancellation in a Quasi-Synchronous Reverse Link MC-CDMA System

    Suwich KUNARUTTANAPRUK  Somchai JITAPUNKUL  

     
    PAPER-Interference Canceller

      Vol:
    E88-B No:1
      Page(s):
    93-105

    In a quasi-synchronous reverse link multicarrier code division multiple access system, the signal detection is vulnerable to the interference due to the insufficient guard interval. A multiuser detection with intersymbol interference cancellation is a potential solution to overcome this problem. In this paper, we proposes a parameter acquisition technique based on a specially designed training sequence for the receiver. The concerned parameters are the transformed signature sequences and the ISI generation sequences. We analyze a criterion for the training sequences to achieve the minimum mean square error and propose the systematic generation of the optimum training sequences. We also propose the noise variance estimator for providing information about noise variance to some classes of multiuser detection. Simulation results prove relevant benefits of the proposed techniques and give useful insights into the system designs.

  • Design of Quadrature Hybrids and Directional Couplers Based on the Equivalent Admittance Approach

    Isao OHTA  Tadashi KAWAI  

     
    INVITED PAPER

      Vol:
    E88-C No:1
      Page(s):
    2-14

    This paper presents a design procedure of a directional coupler consisting of a twofold symmetric four-port circuit with four identical matching networks at each port. The intrinsic power-split ratio and the equivalent admittance of the directional coupler are formularized in terms of the eigenadmittances of the original four-port without the matching networks. These formulas are useful for judgment on the realizability of a directional coupler in a given circuit structure and for design of the matching networks. Actually, the present procedure is applied to designing various quadrature hybrids and directional couplers, and its practical usefulness as well as several new circuit structures are demonstrated.

  • A Simple Improvement to Tufts-Kumaresan Method for Multiple Sinusoidal Frequency Estimation

    Hing-Cheung SO  Chi-Tim LEUNG  

     
    LETTER-Digital Signal Processing

      Vol:
    E88-A No:1
      Page(s):
    381-383

    Tufts-Kumaresan (TK) method, which is based on linear prediction approach, is a standard algorithm for estimating the frequencies of sinusoids in noise. In this Letter, the TK algorithm is improved by attenuating the noise in the observation vector with the use of the reduced rank data matrix. It is shown that the proposed modification can provide smaller mean square frequency errors with lower threshold signal-to-noise ratios than the TK method and a total least squares solution.

  • Unified Packet Scheduling Method Considering Delay Requirement in OFCDM Forward Link Broadband Wireless Access

    Yoshiaki OFUJI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER-Scheduling

      Vol:
    E88-B No:1
      Page(s):
    170-182

    This paper proposes a unified packet scheduling method that considers the delay requirement of each traffic data packet whether real time (RT) or non-real time (NRT), the channel conditions of each accessing user, and the packet type in hybrid automatic repeat request (ARQ), i.e., either initially transmitted packet or retransmitted packet, in the forward link for Orthogonal Frequency and Code Division Multiplexing (OFCDM) wireless access. In the proposed packet scheduling method, the overall priority function is decided based on PTotal = αDelayPDelay + αTypePType + αSINRPSINR (PDelay, PType, and PSINR are the priority functions derived from the delay requirement, type of packet, and the received signal-to-interference plus noise power ratio (SINR), respectively, and αDelay, αType, and αSINR are the corresponding weighting factors). The computer simulation results show that the weighting factor of each priority function as αType/αDelay = 0.6, αSINR/αDelay = 0.4 assuming the linear-type function in PDelay and a constant-type function in PType is optimized. Furthermore, we show that the outage probability for achieving the packet loss rate (PLR) of less than 10-3 for non-real time (NRT) traffic users employing the proposed packet scheduling method is reduced by approximately two orders of magnitude compared to that using the Priority Queuing (PQ) method while maintaining the PLR of real-time (RT) traffic users at the same level as that using the PQ method.

  • On the Linear Complexity of Generalized Cyclotomic Sequences of Order Four Over Zpq

    Enjian BAI  Xiaotong FU  Guozhen XIAO  

     
    LETTER-Information Security

      Vol:
    E88-A No:1
      Page(s):
    392-395

    In this letter we first introduce a new generalized cyclotomic sequence of order four with respect to pq, then we calculate the linear complexity and minimal polynomial of this sequence. Our results show that the new binary sequence is quite good from the linear complexity viewpoint.

  • Two Dimensional Electric Field Measurement in Microstrip-Line Circuits by Coaxial-Type Probe

    Takaharu HIRAOKA  Yoshiaki NEISHI  Tetsuo ANADA  Jui-Pang HSU  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    77-82

    A detailed investigation of the electromagnetic field distributions in high frequency printed circuits and high-speed interconnects is very useful for physical understanding, studies of electromagnetic coupling effects for EMC and EMI and for optimization of electromagnetic circuit designs. The aim of this paper is to show how to measure the electric field distributions in electromagnetic circuits. An electromagnetic analysis for microstrip-line circuits is carried out by using a finite-difference time domain technique and its measurement is carried out by using a small probe antenna. The measurement results are in fairly good agreement with those of the numerical analysis using the FDTD method. Thus, the measurement system offers a valid means for predictions in the theoretical analysis of more complicated discontinuity problems.

  • Object-Based Multimedia Scheduling Based on Bipartite Graphs

    Huey-Min SUN  Chia-Mei CHEN  LihChyun SHU  

     
    PAPER-Multimedia Systems for Communications" Multimedia Systems for Communications

      Vol:
    E88-B No:1
      Page(s):
    372-383

    In this study, we propose an object-based multimedia model for specifying the QoS (quality of service) requirements, such as the maximum data-dropping rate or the maximum data-delay rate. We also present a resource allocation model, called the net-profit model, in which the satisfaction of user's QoS requirements is measured by the benefit earned by the system. Based on the net-profit model, the system is rewarded if it can allocate enough resources to a multimedia delivery request and fulfill the QoS requirements specified by the user. At the same time, the system is penalized if it cannot allocate enough resources to a multimedia delivery request. We first investigate the problem of how to allocate resources efficiently, so that the QoS satisfaction is maximized. However, the net-profit may be distributed unevenly among the multimedia delivery requests. Thus, the second problem discusses how to allocate the resource efficiently so that the net-profit difference is minimized between any two multimedia requests. A dynamic programming based algorithm is proposed to find such an optimal solution with the minimum net-profit differences.

  • All Fundamental Particular Solutions are Needed to Express an Arbitrary Firing Count Vector in Petri Nets

    Akira MURAYA  Tadashi MATSUMOTO  Seiichiro MORO  Haruo HASEGAWA  

     
    LETTER-Concurrent Systems

      Vol:
    E88-A No:1
      Page(s):
    399-404

    For fixed initial and destination states (i.e., markings), M0 and Md, there exist generally infinite firing count vectors in a Petri net. In this letter, it is shown that all fundamental particular solutions as well as all minimal T-invariants w.r.t. firing count vectors are needed to express an arbitrary firing count vector for the fixed M0 and Md. An algorithm for finding a special firing count vector which is expressed by using the only one specified fundamental particular solution is also given.

  • A Construction of Public-Key Cryptosystem Based on Singular Simultaneous Equations

    Masao KASAHARA  Ryuichi SAKAI  

     
    PAPER-Public Key Cryptography

      Vol:
    E88-A No:1
      Page(s):
    74-80

    Extensive studies have been made of the public key cryptosystems based on multivariate polynomials over F2. However most of the proposed public key cryptosystems based on multivariate polynomials, are proved not secure. In this paper, we propose several types of new constructions of public key cryptosystems based on randomly generated singular simultaneous equations. One of the features of the proposed cryptosystems is that the sets of random singular simultaneous equations significantly enlarges the size of the transformation.

  • Exact Analyses of Computational Time for Factoring in Quantum Computers

    Noboru KUNIHIRO  

     
    PAPER-Public Key Cryptography

      Vol:
    E88-A No:1
      Page(s):
    105-111

    We evaluate the exact number of gates for circuits of Shor's factoring algorithm. We estimate the running time for factoring a large composite such as 576 and 1024 bit numbers by appropriately setting gate operation time. For example, we show that on the condition that each elementary gate is operated within 50 µsec, the running time for factoring 576 bit number is 1 month even if the most effective circuit is adopted. Consequently, we find that if we adopt the long gate operation-time devices or qubit-saving circuits, factorization will not be completed within feasible time on the condition that a new efficient modular exponentiation algorithm will not be proposed. Furthermore, we point out that long gate operation time may become a new problem preventing a realization of quantum computers.

  • Discrimination Method of Synthetic Speech Using Pitch Frequency against Synthetic Speech Falsification

    Akio OGIHARA  Hitoshi UNNO  Akira SHIOZAKI  

     
    PAPER-Biometrics

      Vol:
    E88-A No:1
      Page(s):
    280-286

    We propose discrimination method of synthetic speech using pitch pattern of speech signal. By applying the proposed synthetic speech discrimination system as pre-process before the conventional HMM speaker verification system, we can improve the safety of conventional speaker verification system against imposture using synthetic speech. The proposed method distinguishes between synthetic speech and natural speech according to the pitch pattern which is distribution of value of normalized short-range autocorrelation function. We performed the experiment of user verification, and confirmed the validity of the proposed method.

  • A MIMO-OFDM Receiver Employing the Low-Complexity Turbo Equalization in Multipath Environments with Delay Difference Greater than the Guard Interval

    Satoshi SUYAMA  Hiroshi SUZUKI  Kazuhiko FUKAWA  

     
    PAPER-MIMO

      Vol:
    E88-B No:1
      Page(s):
    39-46

    When the multipath delay difference exceeds the guard interval (GI), the performance of MIMO-OFDM transmission suffers severely from both the inter-symbol interference (ISI) from the adjacent OFDM symbols and the inter-carrier interference (ICI) within the same symbol. This paper therefore proposes a MIMO-OFDM receiver employing the low-complexity turbo equalization. The proposed receiver initially separates the data streams and suppresses ICI by linear processing. In the iterative processing, it cancels the other data streams as well as ISI and ICI. The MIMO-OFDM turbo equalizer consists of an ISI canceller, an ICI canceller, an optimal detection filter, and a MAP detector. The proposed receiver can improve the transmission performance by exploiting the log-likelihood ratio that the decoding process produces for canceling both ISI and ICI and separating of the spatially multiplexed streams. Computer simulations, which apply the wireless LAN to MIMO, demonstrate that the proposed receiver can provide excellent performance in the severe multipath channels where the delay difference is greater than GI.

4261-4280hit(6809hit)