The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

4821-4840hit(6809hit)

  • The µ -Chip: An Ultra-Small 2.45 GHz RFID Chip for Ubiquitous Recognition Applications

    Mitsuo USAMI  Masaru OHKI  

     
    INVITED PAPER

      Vol:
    E86-C No:4
      Page(s):
    521-528

    An ultra-small (0.4 0.4 mm2) radio frequency identification (RFID) chip named µ -chip has been developed for use in a wide range of individual recognition applications. The chip is designed to be 0.06 mm thick so that it can be applied to paper and to thin paper-like media, which have been used widely in retailing to create certificates that have monetary value, as well as to token-type devices. The µ-chip has been designed and fabricated using 0.18 µm standard CMOS technology with 3-layer aluminum metallization. The chip has a 128-bit memory. The memory data is easily read by applying a 2.45 GHz microwave radio frequency identification circuit technique. The minimum operating voltage of the chip's digital circuits is 0.5 V. This chip has attached to a thin-film external antenna. The chip terminals are connected to the antenna by an anisotropic conductive film (ACF). This type of structure results in a 0.15 mm thin transponder. The maximum communication distance between the µ -chip and a reader is 300 mm at a reader power of 300 mW.

  • A Dynamical N-Queen Problem Solver Using Hysteresis Neural Networks

    Takao YAMAMOTO  Kenya JIN'NO  Haruo HIROSE  

     
    PAPER

      Vol:
    E86-A No:4
      Page(s):
    740-745

    In a previous study about a combinatorial optimization problem solver using neural networks, since the Hopfield method, convergence to the optimum solution sooner and with more certainty is regarded as important. Namely, only static states are considered as the information. However, from a biological point of view, dynamical systems have attracted attention recently. Therefore, we propose a "dynamical" combinatorial optimization problem solver using hysteresis neural networks. In this paper, the proposed system is evaluated by the N-Queen problem.

  • Automatic LSI Package Lead Inspection System with CCD Camera for Backside Lead Specification

    Wataru TAMAMURA  Koji NAKAMAE  Hiromu FUJIOKA  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:4
      Page(s):
    661-667

    An automatic LSI package lead inspection system for backside lead specification is proposed. The proposed system inspects not only lead backside contamination but also the mechanical lead specification such as lead pitch, lead offset and lead overhangs (variations in lead lengths). The total inspection time of a UQFP package with a lead count of 256 is less than the required time of 1 second. Our proposed method is superior to the threshold method used usually, especially for the defect between leads.

  • Blind Source Separation of Acoustic Signals Based on Multistage ICA Combining Frequency-Domain ICA and Time-Domain ICA

    Tsuyoki NISHIKAWA  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Digital Signal Processing

      Vol:
    E86-A No:4
      Page(s):
    846-858

    We propose a new algorithm for blind source separation (BSS), in which frequency-domain independent component analysis (FDICA) and time-domain ICA (TDICA) are combined to achieve a superior source-separation performance under reverberant conditions. Generally speaking, conventional TDICA fails to separate source signals under heavily reverberant conditions because of the low convergence in the iterative learning of the inverse of the mixing system. On the other hand, the separation performance of conventional FDICA also degrades significantly because the independence assumption of narrow-band signals collapses when the number of subbands increases. In the proposed method, the separated signals of FDICA are regarded as the input signals for TDICA, and we can remove the residual crosstalk components of FDICA by using TDICA. The experimental results obtained under the reverberant condition reveal that the separation performance of the proposed method is superior to those of TDICA- and FDICA-based BSS methods.

  • Decision-Directed Channel Estimation for QAM-Modulated OFDM Systems

    Minjoong RIM  Jaemin AHN  Yeon-soo KIM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1427-1430

    When decision-directed channel estimation is used for QAM-OFDM systems, the optimal filter shape depends on the amplitudes of the modulated symbols as well as the channel characteristics. In this letter we propose a simple channel estimation method for multi-level-amplitude-modulated systems, which can effectively suppress the estimation variances with a small filter. Using the proposed method the implementation cost can be reduced and possibly better results might be obtained by avoiding the estimation bias due to large-sized filtering.

  • Frequency Domain Active Noise Control Systems Using the Time Difference Simultaneous Perturbation Method

    Takashi MORI  Yoshinobu KAJIKAWA  Yasuo NOMURA  

     
    LETTER-Engineering Acoustics

      Vol:
    E86-A No:4
      Page(s):
    946-949

    In this letter, we propose a frequency domain active noise control system using the time difference simultaneous perturbation method. This method is an algorithm based on the simultaneous perturbation method which updates the coefficients of the noise control filter only by use of the error signal. The time difference simultaneous perturbation method updates the filter coefficients by using one kind of error signal, while the simultaneous perturbation method updates the filter coefficients by using two kinds of error signal. In the ANC systems, the time difference simultaneous perturbation method is superior because ANC systems cannot obtain two error signals at the same time. When this method is applied to ANC systems, the convergence speed can be increased to a maximum of twice that of the conventional method.

  • Simulation of DGSOI MOSFETs with a Schrodinger-Poisson Based Mobility Model

    Andreas SCHENK  Andreas WETTSTEIN  

     
    PAPER

      Vol:
    E86-C No:3
      Page(s):
    385-390

    A TCAD implementation of a quantum-mechanical mobility model in the commercial device simulator DESSIS_ISE is presented. The model makes use of an integrated 1D Schrodinger-Poisson solver. Effective mobilities µeff and transfer characteristics are calculated for DGSOI MOSFETs with a wide range of silicon film thickness tSi and buried-oxide thickness tbox. It is shown that the volume-inversion related enhancement of µeff for tSi 10 nm is bound to symmetrical DGSOIs, whereas SIMOX based devices with thick buried oxides limit µeff to the bulk value. The still immature technology makes a conclusive comparison with experimental data impossible.

  • Two-Particle Wave Function of Electrons Coherently Propagating along Quantum Wires

    Susanna REGGIANI  Andrea BERTONI  Massimo RUDAN  

     
    PAPER

      Vol:
    E86-C No:3
      Page(s):
    391-397

    A two-qubit system made of electrons running along coupled pairs of quantum wires is described and numerically analyzed. A brief review of the basic gates is given first, based on preliminary investigations, followed by the description of the electron dynamics. A detailed analysis of a conditional phase shifter is carried out by means of a time-dependent Schrodinger solver applied to a two-particle system. A quantum network suitable for creating entanglement is simulated, and results are shown. The physical structure of the proposed network is within the reach of a solid-state implementation. The physical parameters used in the computations have been chosen with reference to silicon quantum wires embedded in silicon dioxide.

  • Polar Coordinate Based Nonlinear Function for Frequency-Domain Blind Source Separation

    Hiroshi SAWADA  Ryo MUKAI  Shoko ARAKI  Shoji MAKINO  

     
    PAPER-Convolutive Systems

      Vol:
    E86-A No:3
      Page(s):
    590-596

    This paper discusses a nonlinear function for independent component analysis to process complex-valued signals in frequency-domain blind source separation. Conventionally, nonlinear functions based on the Cartesian coordinates are widely used. However, such functions have a convergence problem. In this paper, we propose a more appropriate nonlinear function that is based on the polar coordinates of a complex number. In addition, we show that the difference between the two types of functions arises from the assumed densities of independent components. Our discussion is supported by several experimental results for separating speech signals, which show that the polar type nonlinear functions behave better than the Cartesian type.

  • Equivalence of a Cumulant Maximization Criterion for Blind Deconvolution and a Cumulant Matching Criterion for Blind Identification

    Shuichi OHNO  Yujiro INOUYE  

     
    PAPER-Convolutive Systems

      Vol:
    E86-A No:3
      Page(s):
    605-610

    This paper considers a link of two problems; multichannel blind deconvolution and multichannel blind identification of linear time-invariant dynamic systems. To solve these problems, cumulant maximization has been proposed for blind deconvolution, while cumulant matching has been utilized for blind identification. They have been independently developed. In this paper, a cumulant maximization criterion for multichannel blind deconvolution is shown to be equivalent to a least-squares cumulant matching criterion after multichannel prewhitening of channel outputs. This equivalence provides us with a new link between a cumulant maximization criterion for blind deconvolution and a cumulant matching criterion for blind identification.

  • Performance of Iterative Receiver for Joint Detection and Channel Estimation in SDM/OFDM Systems

    SeungYoung PARK  BoSeok SEO  ChungGu KANG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:3
      Page(s):
    1157-1162

    In this letter, we study the performance of the iterative receiver as applied to the space division multiplexing/orthogonal frequency division multiplexing (SDM/OFDM) systems. The iterative receiver under consideration employs the soft in/soft out (SISO) decoding process, which operates iteratively in conjunction with channel estimation for performing data detection and channel estimation at the same time. As opposed to the previous studies in which the perfect channel state information is assumed, the effects of channel estimation are taken into account for evaluating the performance of the iterative receiver and it is shown that the channel estimation applied in every iteration step of the iterative receiver plays a crucial role to warrant the performance, especially at a low signal-to-noise power ratio (SNR).

  • Comparative Assessment of Test Signals Used for Measuring Residual Echo Characteristics

    Nobuhiko KITAWAKI  Takeshi YAMADA  Futoshi ASANO  

     
    PAPER-Network

      Vol:
    E86-B No:3
      Page(s):
    1102-1108

    Appropriate test signals defined by formula or generated by algorithm are used for measuring objective QoS (Quality of Services) for voice operated telecommunication devices such as telephone and speech codec (coder-decoder). However, that for measuring residual echo characteristics in hands-free telecommunications equipped with acoustic echo canceller is under study in ITU-T Recommendation G.167. This paper describes comparative assessment of test signals for measurement of residual echo characteristics. In hands-free telecommunications, acoustical echo canceller has been developed to remove a room echo signal through the loudspeaker to the microphone in the receiving end. Performance of the echo canceller system is evaluated by residual echo characteristics expressed in echo return loss enhancement (ERLE). The ERLE can be conventionally measured by putting white noise into the echo canceller system. However, white noise is not adequate as the test signal for measuring the performance of the echo canceller, since the performance may depend on the characteristics of input test signal, and the characteristics of the white noise differ from those of real voice. Therefore, this paper discusses appropriate characteristics of real voice required for objective quality evaluation of echo canceller system. The test signals used for this verification tests were real voice (RV), white noise (WN), frequency weighted noise (FWN), artificial voice (AV), and composite source signal (CSS) depending on the approximation of real voice characteristics. As the comparative assessment results, the ERLE characteristics measured by artificial voice conforming to ITU-T Recommendation P.50 having average characteristics of real voices in time and frequency domains are almost equivalent to those of real voice and best among those test signals. It is concluded that artificial voice P.50 is satisfied with measurement of residual echo characteristics.

  • An Investigation of Magnetic Field Effects on Energy States for Nanoscale InAs/GaAs Quantum Rings and Dots

    Yiming LI  Hsiao-Mei LU  

     
    PAPER

      Vol:
    E86-C No:3
      Page(s):
    466-473

    In this paper, we investigate the electron-hole energy states and energy gap in three-dimensional (3D) InAs/GaAs quantum rings and dots with different shapes under external magnetic fields. Our realistic model formulation includes: (i) the effective mass Hamiltonian in non-parabolic approximation for electrons, (ii) the effective mass Hamiltonian in parabolic approximation for holes, (iii) the position- and energy-dependent quasi-particle effective mass approximation for electrons, (iv) the finite hard wall confinement potential, and (v) the Ben Daniel-Duke boundary conditions. To solve the 3D nonlinear problem without any fitting parameters, we have applied the nonlinear iterative method to obtain self-consistent solutions. Due to the penetration of applied magnetic fields into torus ring region, for ellipsoidal- and rectangular-shaped quantum rings we find nonperiodical oscillations of the energy gap between the lowest electron and hole states as a function of external magnetic fields. The nonperiodical oscillation is different from 1D periodical argument and strongly dependent on structure shape and size. The result is useful to study magneto-optical properties of the nanoscale quantum rings and dots.

  • An Efficient Resource Reservation Protocol by QoS Agents in Mobile Networks

    Young-Joo SUH  Min-Sun KIM  Young-Jae KIM  

     
    PAPER-Network

      Vol:
    E86-B No:3
      Page(s):
    1094-1101

    There is a growing demand that mobile networks should provide quality-of-service (QoS) to mobile users since portable devices become popular and more and more applications require real-time services. Providing QoS to mobile hosts is very difficult due to mobility of hosts. The resource ReSerVation Protocol (RSVP) establishes and maintains a reservation state to ensure a given QoS level between the sender and receiver. However, RSVP is designed for fixed networks and thus it is inadequate in wireless mobile networking environments. In this paper, we propose a resource reservation protocol for mobile hosts in mobile networks. The proposed protocol extends the RSVP by introducing RSVP agents in local networks to manage the reservations. The proposed protocol reduces packet delay, bandwidth overhead, and the number of RSVP messages to maintain reservation states. We examined the performance of the proposed protocol by simulation and we got an improved performance over the existing protocols.

  • Automatic Measurement of Pressed/Breathy Phonation at Acoustic Centres of Reliability in Continuous Speech

    Parham MOKHTARI  Nick CAMPBELL  

     
    PAPER-Speech Synthesis and Prosody

      Vol:
    E86-D No:3
      Page(s):
    574-582

    With the aim of enabling concatenative synthesis of expressive speech, we herein report progress towards developing robust and automatic algorithms for paralinguistic annotation of very large recorded-speech corpora. In particular, we describe a method of combining robust acoustic-prosodic and cepstral analyses to locate centres of acoustic-phonetic reliability in the speech stream, wherein physiologically meaningful parameters related to voice quality can be estimated more reliably. We then report some evaluations of a specific voice-quality parameter known as the glottal Amplitude Quotient (AQ), which was proposed in [2],[6] and is here measured automatically at centres of reliability in continuous speech. Analyses of a large, single-speaker corpus of emotional speech first validate the perceptual importance of the AQ parameter in quantifying the mode of phonation along the pressed-modal-breathy continuum, then reveal some of its phonetic, prosodic, and paralinguistic dependencies.

  • A Minimal Modeling of Neuronal Burst-Firing Based on Bifurcation Analysis

    Vasileios TSEROLAS  Yoshifumi SEKINE  

     
    PAPER-Nonlinear Problems

      Vol:
    E86-A No:3
      Page(s):
    678-685

    We propose a minimal model of neuronal burst-firing that can be considered as a modification and extention of the Bonhoeffer-van der Pol (BVP) model. By using linear stability analysis we show that one of the equilibrium points of the fast subsystem is a saddle point which divides the phase plane into two regions. In one region all phase trajectories approach a limit cycle and in the other they approach a stable equilibrium point. The slow subsystem describes a slowly varying inward current. Various types of bursting phenomena are presented by using bifurcation analysis. The simplicity of the model and the variety of firing modes are the biggest advantages of our model with obvious applications in understanding underlying mechanisms of generation of neuronal firings and modeling oscillatory neural networks.

  • A Set of Orthogonal Polynomials for Use in Approximation of Nonlinearities in Digital QAM Systems

    Shin'ichi KOIKE  

     
    PAPER-Digital Signal Processing

      Vol:
    E86-A No:3
      Page(s):
    661-666

    This paper derives a set of orthogonal polynomials for a complex random variable that is uniformly distributed in two dimensions (2D). The polynomials are used in a series expansion to approximate memoryless nonlinearities in digital QAM systems. We also study stochastic identification of nonlinearities using the orthogonal polynomials through analysis and simulations.

  • Crosstalk Equalization for High-Speed Digital Transmission Systems

    Hui-Chul WON  Gi-Hong IM  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:3
      Page(s):
    1063-1072

    In this paper, we discuss crosstalk equalization technique for high-speed digital transmission systems. This equalization technique makes use of the cyclostationarity of the crosstalk interferer. We first analyze the eigenstructure of the equalizer in the presence of cyclostationary crosstalk interference. It is shown that the eigenvalues of the equalizer depend upon the folded signal and interferer power spectra, and the cross power spectrum between the signal and the interferer. The expressions of the minimum mean square error (MMSE) and the excess MSE are then obtained by using the equalizer's eigenstructure. Analysis and simulation results indicate that such peculiar equalizer's eigenstructure in the presence of cyclostationary interference results in significantly different initial convergence and steady-state behaviors as compared with the stationary noise case. We also show that the performance of the equalizer varies depending on the relative clock phase of the symbol clocks used by the signal and the crosstalk interferer.

  • Performance of a Burst Switching Scheme for CDMA-Based Wireless Packet Data Systems

    Sung Kyung KIM  Meejoung KIM  Chung Gu KANG  

     
    PAPER-Wireless Communication Switching

      Vol:
    E86-B No:3
      Page(s):
    1082-1093

    Emerging requirements for higher rate data services and better spectrum efficiency are the main issues of third-generation mobile radio systems. In particular, a new concept of burst switching has been introduced for supporting the packet data services in the CDMA-based wireless system. In the burst switching system, radio resources are allocated to users for the duration of data bursts, which is a series of packets, as opposed to the conventional packet switching scheme. To implement the burst switching scheme, three different states (active, control hold, dormant states) are defined and two transition timers are employed to release the fundamental and supplemental code channels, respectively, at certain instances. Furthermore, the system is subject to burst admission control policy, with which a burst is admitted only when the number of currently available channels is greater than the admission threshold. Since there exists a trade-off between the additional packet access delay during a burst and resource utilization depending on the time-out value of the transition timer and burst admission threshold, it is critical to understand the performance characteristics in terms of the underlying design parameters. In this paper, we develop an analytic model and present a Quasi-Birth-Death (QBD) queueing analysis for evaluating the performance of burst switching schemes. This work focuses on the trade-off studies for optimizing the time-out value of the transition timer so as to minimize the average delay performance. Theoretical performance measures are derived by means of the matrix geometric method and furthermore, some simulation results are presented to validate the proposed analytical approach.

  • Antennas for Terrestrial Microwave Relay Links Open Access

    Toshikazu HORI  

     
    INVITED PAPER

      Vol:
    E86-B No:3
      Page(s):
    900-908

    Antennas for Japanese terrestrial microwave relay links have been developed since the1950's and put into commercial use up to now in Japan. In particular, the path-length lens antennas developed in 1953 represents a monumental achievement for terrestrial microwave relay links, and the offset antenna for 256 QAM radio relay links developed in 1989 has the best electrical performance in the world. This paper reviews the antennas for Japanese terrestrial microwave relay links that have historical significance and describes the antenna design technologies developed in Japan.

4821-4840hit(6809hit)