The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

6021-6040hit(6809hit)

  • A Memory-Based Parallel Processor for Vector Quantization: FMPP-VQ

    Kazutoshi KOBAYASHI  Masayoshi KINOSHITA  Hidetoshi ONODERA  Keikichi TAMARU  

     
    PAPER-Multi Processors

      Vol:
    E80-C No:7
      Page(s):
    970-975

    We propose a memory-based processor called a Functional Memory Type Parallel Processor for vector quantization (FMPP-VQ). The FMPP-VQ is intended for low bit-rate image compression using vector quantization. It accelerates the nearest neighbor search on vector quantization. In the nearest neighbor search, we look for a vector nearest to an input one among a large number of code vectors. The FMPP-VQ has as many PEs (processing elements, also called "blocks") as code vectors. Thus distances between an input vector and code vectors are computed simultaneously in every PE. The minimum value of all the distances is searched in parallel, as in conventional CAMs. The computation time does not depend on the number of code vectors. In this paper, we explain the detail of the architecture of the FMPP-VQ, its performance and its layout density. We designed and fabricated an LSI including four PEs. The test results and performance estimation of the LSI are also reported.

  • Uplink Capacity of Macro/Spot-Microcellular Systems in Frequency Division CDMA

    Kohji TAKEO  

     
    PAPER

      Vol:
    E80-A No:7
      Page(s):
    1218-1225

    Macro/microcellular systems have recently been proposed to accommodate both fast and slow moving users. If macrocells and microcells reuse the same frequency band in a macro/microcellular system, the interference between both types of cells can become a critical problem and degrade system capacity, particularly in CDMA systems. In this paper, Frequency Division CDMA (FD-CDMA) is applied to CDMA macro/spot-microcellular systems and uplink capacity is evaluated. The CDMA frequency band is divided into several subbands and both macrocells and microcells reuse the same subbands simultaneously. Interference signals from both types of cells are dispersed by dividing the frequency band, and performance degradation resulting from interference is reduced at both the macrocell and microcell. By reusing the same frequency band for macrocells and microcells, the system capacities become more flexible and can be changed according to variations in traffic. This paper describes the detail of the FD-CDMA system. Uplink capacities are calculated for some cell conditions such as microcell size or location through simulation evaluations. A comparison with a non-reuse subband system as well as results of adaptive control of subbands are described.

  • Uniform Physical Optics Diffraction Coefficients for Impedance Surfaces and Apertures

    Masayuki OODO  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E80-C No:7
      Page(s):
    1056-1062

    The key concept of Physical Optics (PO), originally developed for a perfectly electric conductor (PEC), consists in that the high frequency fields on the scatterer surface are approximated by those which would exist on the infinite flat surface tangent to the scatterer. The scattered fields at arbitrary observation points are then calculated by integrating these fields on the scatterer. This general concept can be extended to arbitrary impedance surfaces. The asymptotic evaluation of this surface integration in terms of diffraction coefficients gives us the fields in analytical forms. In this paper, uniform PO diffraction coefficients for the impedance surfaces are presented and their high accuracy is verified numerically. These coefficients are providing us with the tool for the mechanism extraction of various high frequency methods such as aperture field integration method and Kirchhoff's method.

  • ARQ with Erasures Correction in the Frequency-Nonselective Fading Channel

    Lev GOLDFELD  Vladimir LYANDRES  Dov WULICH  

     
    LETTER-Signaling System and Communication Protocol

      Vol:
    E80-B No:7
      Page(s):
    1101-1103

    The performance of the ARQ scheme with Erasures Correction decoding (ARQEC) used over the frequency-nonselective Nakagami fading channel subject to additive white Gaussian noise is considered and compared to hybrid ARQ.

  • Design and Performance of a New OQPSK Coherent Demodulator Using an Advanced Simultaneous Carrier and Bit-Timing Recovery SchemeApplication to Wireless ATM Systems

    Yoichi MATSUMOTO  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E80-A No:7
      Page(s):
    1175-1182

    This paper presents a new offset-quadrature-phase-shift-keying (OQPSK) coherent demodulation scheme for wireless asynchronous transfer mode (WATM) systems that premise the Ricean fading communication channels (e.g., typically with derectional antennas). The presented demodulator is basically advanced from a simultaneous carrier and bit-timing recovery (SCBR) scheme by newly employing a phase compensated filter and a reverse-modulation scheme for OQPSK. This advancement aims to enhance the carrier phase tracking performance against the phase fluctuation due to the fading and/or the phase rotation caused by the carrier frequency error of the oscillator. Design consideration and performance evaluation of the demodulator are extensively carried out under Ricean fading channels typical of the WATM systems as well as additive white Gaussian noise (AWGN) channels. The evaluation ressults show that the advanced SCBR (ASCBR) scheme achieves a bit-error-rate/cell-error-rate (BER/CER) performance close to ideal coherent detection with a considerably short preamble, e.g., 8 symbols. Specifically, compared with differential detection (evaluated for QPSK with the hard-wired clock), the new coherent demodulator achieves a significant required Eb/No improvement, which becomes larger as the fading condition degrades. This paper concludes that the ASCBR scheme is a strong candidate for the Ricean-fading-premise WATM systems.

  • Model for Thermal Noise in Semiconductor Bipolar Transistors at Low-Current Operation as Multidimensional Diffusion Stochastic Process

    Yevgeny V.MAMONTOV  Magnus WILLANDER  

     
    PAPER-Electronic Circuits

      Vol:
    E80-C No:7
      Page(s):
    1025-1042

    This work presents a further development of the approach to modelling thermal (i.e. carrier-velocity-fluctuation) noise in semiconductor devices proposed in papers by the present authors. The basic idea of the approach is to apply classical theory of Ito's stochastic differential equations (SDEs) and stochastic diffusion processes to describe noise in devices and circuits. This innovative combination enables to form consistent mathematical basis of the noise research and involve a great variety of results and methods of the well-known mathematical theory in device/circuit design. The above combination also makes our approach completely different, on the one hand, from standard engineering formulae which are not associated with any consistent mathematical modelling and, on the other hand, from the treatments in theoretical physics which are not aimed at device/circuit models and design. (Both these directions are discussed in more detail in Sect. 1). The present work considers the bipolar transistor compact model derived in Ref. [2] according to theory of Ito's SDEs and stochastic diffusion processes (including celebrated Kolmogorov's equations). It is shown that the compact model is transformed into the Ito SDE system. An iterative method to determine noisy currents as entries of the stationary stochastic process corresponding to the above Ito system is proposed.

  • A Study on Reducing Transmission Delay in Mobile Video Communication Systems

    Naoto MATOBA  Yasushi KONDO  Masaki YAMASHINA  Toshiaki TANAKA  

     
    PAPER

      Vol:
    E80-A No:7
      Page(s):
    1281-1287

    Applying ARQ to real time video communication can significantly increase transmission delay due its retransmission operations. We analyze this delay and propose an adaptive error control scheme that uses acknowledgment from the receiver to reduce the delay. We evaluate this scheme using a computer simulation and show that the proposed scheme can reduce the delay by controlling the amount of video data by changing the quantization step size and video frame skipping. It also offers acceptable video quality as confirmed by a subjective evaluation test.

  • An Interactive Identification Scheme Based on Quadratic Residue Problem

    DaeHun NYANG  EaGu KIM  JooSeok SONG  

     
    PAPER-Information Security

      Vol:
    E80-A No:7
      Page(s):
    1330-1335

    We propose an interactive identification scheme based on the quadratic residue problem. Prover's identity can be proved without revealing his secret information with only one accreditation. The proposed scheme requires few computations in the verification process, and a small amount of memory to store the secret information, A digital signature based on this scheme is proposed, and its validity is then proved. Lastly, analysis about the proposed scheme is presented at the end of the paper.

  • A Modified Code Tracking Loop for Direct-Sequence Spread-Spectrum Systems on Frequency-Selective Fading channels

    Jia-Chin LIN   Lin-Shan LEE  

     
    PAPER-Mobile Communication

      Vol:
    E80-B No:7
      Page(s):
    1055-1063

    A modified fully-digital code tracking loop is proposed in this paper for direct-sequence spread-spectrum signaling on a frequency-selective fading channel. A data-modulated channel estimator is used to cope with the time-varying Rayleigh fading effect and the data modulation effect, and extract the desired error signal from each path independently in the multipath environments. By taking advantage of the inherent diversity with the maximal ratio combining (MRC) or a proposed Even/odd maximal ratio combining (EMRC) technique, this modified code tracking loop can avoid the problem due to the drift or flutter effects of the error characteristics, and provide better performance on frequency selective fading channels. Extensive computer simulation has verified the analysis and indicated very attractive behavior of the proposed digital tracking loop.

  • ECKF-SVD Method for Estimating a Single Complex Sinusoid and Its Parameters in White Noise

    Kiyoshi NISHIYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:7
      Page(s):
    1308-1317

    A new method is proposed for estimating a single complex sinusoid and its parameters (frequency and amplitude) from measurements corrupted by white noise. This method is called the ECKF-SVD method, which is derived by applying an extended complex Kalman filter (ECKF) to a nonlinear stochastic system whose state variables consist of the AR coefficient (a function of frequency) and a sample of the original signal. Proof of the stability is given in the case of a single sinusoid. Simulations demonstrate that the proposed ECKF-SVD method is effective for estimating a single complex sinusoid and its frequency under a low signal-to-noise ratio (SNR). In addition, the amplitude estimation by means of the ECKF-SVD method is also discussed.

  • Experimental Demonstrations of IP over ATM with Congestion Avoidance Flow Control: CEFLAR

    Yoshio KAJIYAMA  Hideo TATSUNO  Nobuyuki TOKURA  

     
    LETTER-Communication Networks and Services

      Vol:
    E80-B No:7
      Page(s):
    1098-1100

    Experimental demonstrations of IP over ATM with congestion avoidance flow control are described. The results confirm that this network can control the transmission rate without upper layer anomalies, IP packet loss, or TCP retransmission. Efficient and fair sharing of the available bandwidth is realized in local area networks.

  • A Small-Sized 10 W Module for 1.5 GHz Portable DMCA Radios Using New Power Divider/Combiner

    Masahiro MAEDA  Morio NAKAMURA  Shigeru MORIMOTO  Hiroyuki MASATO  Yorito OTA  

     
    PAPER

      Vol:
    E80-C No:6
      Page(s):
    751-756

    A small-sized three-stage GaAs power module has been developed for portable digital radios using M-16QAM modulation. This module has exhibited typical P1dB of 10 W with PAE of 48% and a power gain of 35 dB at a low supply voltage of 6.5 V in 1.453-1.477 GHz band. The volume of the module is only 1.5 cc, which is one of the smallest value in 10 W class modules ever reported. In order to realize the reduced size and the high power performances simultaneously, the module has employed new power divider/combiner circuits with significant features of the reduced occupation area, the improved isolation properties and the function of second-harmonic control.

  • Linear Complexity of Periodic Sequences Obtained from a Sequence over GF(p) with Period pn-1 by One-Symbol Deletion

    Satoshi UEHARA  Kyoki IMAMURA  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E80-A No:6
      Page(s):
    1164-1166

    From a sequence {ai}i0 over GF(p) with period pn-1 we can obtain another periodic sequence {i}i0 with period pn-2 by deleting one symbol at the end of each period. We will give the bounds (upper bound and lower bound) of linear complexity of {i}i0 as a typical example of instability of linear complexity. Derivation of the bounds are performed by using the relation of characteristic polynomials between {ai}i0 and {ai(j)}i0={ai+j}i0, jGF(p){0}. For a binary m-sequence {ai}i0 with period 2n-1, n-1 a prime, we will give the explicit formula for the characteristic polynomial of {i}i0.

  • A Single/Multilevel Modulus Algorithm for Blind Equalization of QAM Signals

    Kil Nam OH  

     
    PAPER

      Vol:
    E80-A No:6
      Page(s):
    1033-1039

    A noble blind equalization algorithm (BEA) using a single/multilevel modulus is proposed. According to the residual intersymbol interference (ISI) level of the equalizer output, the new algorithm adopts relevantly a single modulus or a multilevel modulus to form its cost function. Moreover, since the proposed approach separates complex two-dimensional signal into in-phase and quadrature components, and forms the error signals for each component, it has inherently the capability of phase recovery. Hence, it improves the performances of steady-state and recovers the phase rotation without any degradation of transient property. Simulation results confirm the effectiveness of the new approach.

  • Network Design for Simultaneous Traffic Flow Requirements

    Yiu Kwok THAM  

     
    PAPER-Communication Networks and Services

      Vol:
    E80-B No:6
      Page(s):
    930-938

    We consider the problem of designing a physically diverse network that can support any two simultaneous node-to-node traffic flow requirements as called for by special events such as communication link failures or surges in network traffic. The design objective is to obtain a network with the minimum level of network capacity, yet robust enough to handle any two simultaneous traffic flow requirements between any nodes. To arrive at the minimum necessary network capacity,we introduce the concept of nodal requirement. Based on nodal requirements, we can build what may be called uniform protection subnetworks for equal nodal requirements. Successive uniform protection subnetworks can be built for incremental nodal requirements. This direct approach supersedes the extant work on building fully connected networks or loops from maximum spanning trees that can cope with only one traffic flow requirement. Our nodal requirements approach generalizes well to multiple simultaneous traffic flow requirements. Hub subnetworks are introduced to provide protection for networks with a unique node that has the largest nodal requirement. Further, a heuristic is considered and analyzed that assigns edge capacities of the protection network directly based on the largest two traffic flow requirements incident on the end nodes of an edge. The heuristic is attractive in being simple to implement.

  • A New State Space-Based Approach for the Estimation of Two-Dimensional Frequencies and Its Parallel Implementations

    Yi CHU  Wen-Hsien FANG  Shun-Hsyung CHANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:6
      Page(s):
    1099-1108

    In this paper, we present a new state space-based approach for the two-dimensional (2-D) frequency estimation problem which occurs in various areas of signal processing and communication problems. The proposed method begins with the construction of a state space model associated with the noiseless data which contains a summation of 2-D harmonics. Two auxiliary Hankel-block-Hankel-like matrices are then introduced and from which the two frequency components can be derived via matrix factorizations along with frequency shifting properties. Although the algorithm can render high resolution frequency estimates, it also calls for lots of computations. To alleviate the high computational overhead required, a highly parallelizable implementation of it via the principle subband component (PSC) of some appropriately chosen transforms have been addressed as well. Such a PSC-based transform domain implementation not only reduces the size of data needed to be processed, but it also suppresses the contaminated noise outside the subband of interest. To reduce the computational complexity induced in the transformation process, we also suggest that either the transform of the discrete Fourier transform (DFT) or the Haar wavelet transform (HWT) be employed. As a consequence, such an approach of implementation can achieve substantial computational savings; meanwhile, as demonstrated by the provided simulation results, it still retains roughly the same performance as that of the original algorithm.

  • A Low Distortion and High Efficiency Paralleled Power Amplifier without an Isolator in Wide Range of Load Impedances

    Hikaru IKEDA  Hiroaki KOSUGI  Tomoki UWANO  

     
    PAPER

      Vol:
    E80-C No:6
      Page(s):
    763-767

    Characteristics of a distortion, gain and efficiency of a power amplifier grow worse extremely by different phases of the load reflection coefficient when load impedances of the power amplifier are far from 50 Ω. It was found that the value of the distortion, gain and efficiency showed the tradeoff behavior when the phase of the reflection coefficient was different in 180 degrees. Therefore we have proposed new two- and four-parallel unit power amplifiers combined in 90 degree and 45 degree different phases each in order to accomplish low distortion and high efficiency in wide range of load impedances without an isolator. We studied the power amplifiers by simulation based on experiments and realized an amplifier in that adjacent channel leakage power of π/4-DQPSK modulation (for Japan's digital cellular system) is less than -45 dBc and efficiency is over 45% in range of load VSWR less than 3.

  • High Efficient Spatial Power Combining Utilizing Active Integrated Antenna Technique

    Shigeo KAWASAKI  

     
    PAPER

      Vol:
    E80-C No:6
      Page(s):
    800-805

    This paper describes a concept of the quasioptical spatial power combining technique and its demonstration of active integrated antenna arrays with strong coupling as an actual example of high efficient combiner in high frequencies. Some configurations of the arrays such as a 3-element linear array and a 33 array are designed with a circuit and electromagnetic simulator. In order to predict the operating frequencies, large signal FET model parameters are determined from measured small signal S-parameters.

  • Device Parameter Estimation of SOI MOSFET Using One-Dimensional Numerical Simulation Considering Quantum Mechanical Effects

    Rimon IKENO  Hiroshi ITO  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Vol:
    E80-C No:6
      Page(s):
    806-811

    We have been studying on subthreshold characteristics of SOI (Silicon-On-Insulator) MOSFET's in terms of substrate bias dependence using a one-dimensional subthreshold device simulator based on Poisson equation in an SOI multilayer structure for estimating structural parameters of real devices. Here, we consider the quantum mechanical effects in the electron inversion layer of thin SOI MOSFET's, such as the two-dimensionally quantized electron states and transports, with a self-consistent solver of Poisson and Schrodinger equations and a mobility model by the relaxation time approximation. From results of simulations, we found a significant difference between this model and the classical model and concluded that the quantum mechanical effects need to be considered in analizing thin-film SOI devices.

  • On Relationships between Decomposable Programs and Rule Commutative Programs

    Xiaoyong DU  Zhibin LIU  Naohiro ISHII  

     
    LETTER-Databases

      Vol:
    E80-D No:6
      Page(s):
    684-686

    This paper discusses the relationships of two important program classes of linearly recursive programs, that is, decomposable programs and rule commutative programs. We prove that the decomposable programs are always rule commutative. Furthermore, the rule commutative programs that satisfy certain conditions are decomposable. These results are meaningful for integrating the related specified optimization algorithms.

6021-6040hit(6809hit)