Mitsunori MAKINO Shin'ichi OISHI Masahide KASHIWAGI Kazuo HORIUCHI
A type of infinite dimensional homotopy method is considered for numerically calculating a solution curve of a nonlinear functional equation being a Fredholm operator with index 1 and an A-proper operator. In this method, a property of so-called A-proper homotopy plays an important role.
Klaus OBERMAYER Helge RITTER Klaus J. SCHULTEN
Topographic maps begin to be recognized as one of the major computational structures underlying neural computation in the brain. They provide dimension-reducing projections between feature spaces that seem to be established and maintained under the participation of selforganizing, adaptive processes. In this contribution, we investigate how well the structure of such maps can be replicated by simple adaptive processes of the kind proposed by Kohonen. We will particularly address the important issue, how the dimensionality of the input space affects the spatial organization of the resulting map.
Shuichi MATSUMOT Takahiro HAMADA Masahiro SAITO Hitomi MURAKAMI
In recent years, the digitalization of transmission links, such as optical fibre cables, satellite links, and terrestrial microwave links, has been progressed rapidly in many countries. In addition, many types of digital studio equipment have been developed and TV programs can be produced or edited without any picture quality degradation by using such equipment, for example, digital VTR. A high-efficiency bit-reduction coding system is the most promising and effective means for this situation in terms of reducing the cost of digital transmission of TV programs with high picture quality. Considering this background, a new digital coding system has been developed, which makes it possible to transmit up to 4 NTSC TV programs simultaneously over a single DS3 45Mbps link including two high quality sound channels and one 64kbps ancillary data channel for each TV program. The principal bit-reduction technique employed is 2 dimensional intraframe WHT (Walsh Hadamard Transform) coding, which gives higher coding performance for composite TV signals than DCT (Discrete Cosine Transform) coding. In order to attain high picture quality at around 8Mbps for 4 channel transmission, a 3 dimensional adaptive quantization cube which reflects human visual perception sufficiently is employed in the intraframe WHT coding scheme. The hardware has been made compact like a home use VTR. In this paper, first, the algorithm of the coding scheme developed for the coding system is presented, and then the system configuration and its basic coding performance are described.
ATM cross-connect systems, which will be used for provisioning virtual paths (i.e. logical direct connections between exchanges) in future broadband transport networks, simplify network configuration and yield increased routing and capacity allocating flexibility. This paper describes the design of a large capacity ATM cross-connect system that has a multi-stage network structure which requires only one type of switch module. The capacity of the proposed system can be easily increased without service interruptions. To realize cell sequence integrity, a time stamp is added to the self-routing tag. Required time stamp length and efficient module size are discussed.
This paper investigates the compositionality of operational models for concurrency induced by labeled transition systems (LTS's). These models are defined on the basis of a metric domain first introduced by de Bakker and Zucker; the domain is a complete metric space consisting of tree-like structures called processes. Transition system specifications (TSS's) define LTS's; the set of states of such a LTS A is the set of terms generated by a signature Σ. For the syntactical operators F contained in Σ, semantic operations (on processes) associated with F are derived from the TSS S by which A is defined, provided that S satisfies certain syntactical restrictions. By means of these operations, the compositionality of the operational model induced by A is established. A similar result was obtained by Rutten from TTS's which define finitely branching LTS's. The main contribution of this paper is generalization of Rutten's result to be applicable to TSS's which are based on applicative languages including recursion, parameterized statements, and value passing, and which define infinitely branching LTS's. A version of typed λ-calculus incorporating µ-notation is employed as a formalism for treating recursion, parameterized statements, and value-passing. Infinitely branching LTS's are needed to treat programming languages including value passing such as CCS.
Hyunkoo KANG Yoon UH Tasuku TAKAGI
We propose a new distributed signal (analog or digital) transmission system which has the immunity against the noisy channel. An information signal in transmitter is distributed by distributor and the distributed signal is transmitted. Received signal is reconstructed by the inverse distributor in receiver. In this system, an impulsive interference noise which disturbs the transmission signal in the channel passes decoder only, and this interference noise is distributed by the inverse distributor while the transmitted signal is reconstructed. Some appended signals make it possible to estimate the noise components which inversely distributed with the Fourier transformation as the distributor. Basing upon this principle, the transmission system will have an ability to suppress the impulsive interference, and the channel will have high noise immunity. The construction of receiver which can eliminate the impulsive noise is derived.
The new notion of "multiuser interface", an interface for groups working together in a shared workspace, originated from the expansion of CSCW research and the spread of the groupware concept. This paper introduces a new multiuser interface design approach based on the translucent video overlay technique. This approach was realized in the multimedia desktop conference system Team WorkStation. Team WorkStation demonstrates that this translucent video overlay technique can achieve two different goals: (1) fused overlay for realizing the open shared workspace, and (2) selective overlay for effectively using limited screen space. This paper first describes the concept of open shared workspace and its implementation based on the fused overlay technique. The shared work window of Team-WorkStation is created by overlaying translucent individual workspace images. Each video layer is originally physically separated. However, because of the spatial relationships among marks on each layer, the set of overlaid layers provides users with sufficient semantics to fuse them into one image. The usefulness of this cognitive fusion was demonstrated through actual usage in design sessions. Second, the problem of screen space limitation is described. To solve this problem, the idea of ClearFace based on selective overlay is introduced. The ClearFace idea is to lay translucent live face video windows over a shared work window. Through the informal observations of experimental use in design sessions, little difficulty was experienced in switching the focus of attention between the face images and the drawing objects. The theory of selective looking accounts for this flexible perception mechanism. Although users can see drawn objects behind a face without difficulty, we found that users hesitate to draw figures or write text over face images. Because of this behavior, we devised the "movable" face window strategy.
This paper is concerned with the stress simulation of a LOCOS structure during not only oxidation but also the subsequent cooling down based on viscoelastic stress modeling. A viscoelastic model is successfully applied to the oxide, nitride and silicon substrate for a LOCOS structure. Thermal stress is also taken into account during the cooling down process. The viscoelastic deformation problem of all the three materials for the LOCOS structure are solved by a two-dimensional finite element method. It is the first time to show that the stress values after cooling down to room temperature are much higher than those right after oxidation. It is also shown that varying the cooling down rates results in the different stress values after cooling down.
There have been several studies related to a reduction of the amount of computational resources used by Turing machines. As consequences, Linear speed-up theorem", tape compression theorem" and reversal reduction theorem" have been obtained. In this paper, we discuss a leaf reduction theorem on alternating Turing machines. Recently, the result that one can reduce the number of leaves by a constant factor without increasing the space complexity was shown for space- and leaf-bounded alternating Turing machines. We show that for time- and leaf-bounded alternating Turing machines, the number of leaves can be reduced by a constant factor without increasing time used by the machine. Therefore, our result says that a constant factor on the leaf complexity does not affect the power of time- and leaf-bounded alternating Turing machines.
Yoshio KARASAWA Masayuki YASUNAGA
A rigorous theoretical method for predicting "ratio of desired signal power to interference power [c/i]" and "ratio of signal power to noise plus interference power [c/(n+i)]" where both desired and interference signals vary with time under the Nakagami-Rice fading conditions is presented. An alternative simple prediction method which is more desirable from the viewpoint of engineering application is then proposed. Prediction errors given by the simple method are evaluated by comparing to the errors given by the rigorous method, and it is confirmed that the simple method gives reasonable accuracy. This method is expected to serve in the development of frequency re-use technologies and the coordination of various systems for mobile satellite communications in the near future.
Tomoaki OHTSUKI Hiroyuki YASHIMA Iwao SASASE Shinsaku MORI
We propose parallel rate-variable punctured convolutional coded PPM in photon communication to achieve high energy information efficiency Ie for desired bit error rate (BER) and transmission bandwidth. We theoretically show the BER performance, bandwidth expansion factor β and necessary Ie to achieve BER10-6 of the proposed systems for some combinations of code rates. It is found that the proposed system can achieve high Ie for desired BER and β by selecting a suitable combination of code rates depending on the channel conditions. Moreover, it is showm that the proposed system has better BER performance than RS-coded PPM in the range of small β.
Tomoaki OHTSUKI Hiroyuki YASHIMA Iwao SASASE Shinsaku MORI
We propose parallel rate-variable punctured convolutional coded PPM in photon communication to achieve high energy information efficiency Ie for desired bit error rate (BER) and transmission bandwidth. We theoretically show the BER performance, bandwidth expansion factor β and necessary Ie to achieve BER=10-6 of the proposed systems for some combinations of code rates. It is found that the proposed system can achieve high Ie for desired BER and β by selecting a suitable combination of code rates depending on the channel conditions. Moreover, it is shown that the proposed system has better BER performance than RS-coded PPM in the range of small β.
Atsushi FUJIOKA Tatsuaki OKAMOTO Kazuo OHTA
This paper proposes a new construction of the minimum knowledge undeniable signature scheme which solves a problem inherent in Chaum's scheme. We formulate a new proof system, the minimum knowledge interactive bi-proof system, and a pair of languages, the common witness problem, based on the random self-reducible problem. We show that any common witness problem has the minimum knowledge interactive bi-proof system. A practical construction for undeniable signature schemes is proposed based on such a proof system. These schemes provide signature confirmation and disavowal with the same protocol (or at the same time).