The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RIN(2923hit)

1201-1220hit(2923hit)

  • An Efficient Filtering Method for Processing Continuous Skyline Queries on Sensor Data

    Su Min JANG  Choon Seo PARK  Dong Min SEO  Jae Soo YOO  

     
    LETTER-Network

      Vol:
    E93-B No:8
      Page(s):
    2180-2183

    In this paper, we propose a novel filtering method for processing continuous skyline queries in wireless sensor network environments. The existing filtering methods on such environments use filters that are based on router paths. However, these methods do not have a major effect on reducing data for sensor nodes to transmit to the base station, because the filters are applied to not the whole area but a partial area. Therefore, we propose a novel and efficient method to dramatically reduce the data transmissions of sensors through applying an effective filter with low costs to all sensor nodes. The proposed effective filter is generated by using characteristics such as the data locality and the clustering of sensors. An extensive performance study verifies the merits of our new method.

  • Orientation Estimation for Sensor Motion Tracking Using Interacting Multiple Model Filter

    Chin-Der WANN  Jian-Hau GAO  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:8
      Page(s):
    1565-1568

    In this letter, we present a real-time orientation estimation and motion tracking scheme using interacting multiple model (IMM) based Kalman filtering method. Two nonlinear filters, quaternion-based extended Kalman filter (QBEKF) and gyroscope-based extended Kalman filter (GBEKF) are utilized in the proposed IMM-based orientation estimator for sensor motion state estimation. In the QBEKF, measurements from gyroscope, accelerometer and magnetometer are processed; while in the GBEKF, sole measurements from gyroscope are processed. The interacting multiple model algorithm is used for fusing the estimated states via adaptive model weighting. Simulation results validate the proposed design concept, and the scheme is capable of reducing overall estimation errors in sensor motion tracking.

  • Broad-Band Circularly Polarized Ring-Slot Array Antenna for Simultaneous Use of the Orthogonal Polarizations

    Sen FENG  Eisuke NISHIYAMA  Masayoshi AIKAWA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1105-1110

    A novel broad-band ring-slot array antenna for simultaneous use of orthogonal polarizations is presented in this paper. In this antenna, the broad-band performance is obtained by integrating a 22 ring-slot array antenna and a broad-band π/2 hybrid circuit. The simultaneous use of the right-hand circular polarization (RHCP) and the left-hand circular polarization (LHCP) is achieved using orthogonal feed circuits on three layers. The both-sided MIC technology is effectively employed in forming this type of slot array antenna. Experimental results show that the proposed antenna has good circular polarization characteristics for both the LHCP and the RHCP. The measured impedance-bandwidth of return loss better than -10 dB are about 47% both for the LHCP and the RHCP. The 3 dB axial ratio bandwidths are 25% (RHCP) and 29% (LHCP). The isolation between the two input ports is better than -35 dB at center frequency of 7.5 GHz.

  • Full-Wave Analysis of Power Distribution Networks in Printed Circuit Boards Open Access

    Francescaromana MARADEI  Spartaco CANIGGIA  Nicola INVERARDI  Mario ROTIGNI  

     
    INVITED PAPER

      Vol:
    E93-B No:7
      Page(s):
    1670-1677

    This paper provides an investigation of power distribution network (PDN) performance by a full-wave prediction tool and by experimental measurements. A set of six real boards characterized by increasing complexity is considered in order to establish a solid base for behaviour understanding of printed circuit boards. How the growing complexity impacts on the board performance is investigated by measurements and by simulations. Strengths and weakness of PDN modeling by the full-wave software tool Microwave Studio are highlighted and discussed.

  • Analysis of Microstrip Line with Bends Using Fourier Transform and Mode-Matching Technique

    Hyun Ho PARK  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1731-1738

    In this paper, the transmission and reflection properties of the microstrip line with bends are investigated using the Fourier transform and a mode-matching technique. Based on the waveguide model, the microstrip bends are modeled as the rectangular waveguides with perfect electric conducting top and bottom walls and perfect magnetic conducting side walls. Analytical closed-form expressions for transmission and reflection coefficients are developed using the residue calculus. To verify the proposed method, numerical computations are performed for comparison with 3D full-wave simulations and measurements. A quarter-wavelength transmission line scheme is also proposed to improve the signal integrity of double bend discontinuity.

  • Beam Steering of Leaky Wave Radiation from Nonreciprocal Phase-Shift Composite Right/Left Handed Transmission Lines

    Ken HORIKAWA  Tetsuya UEDA  Masahiro AKIYAMA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1089-1097

    Beam steering of leaky wave radiation from a nonreciprocal composite right/left handed transmission line with a ferrite substrate is proposed. The nonreciprocal phase constants of the line were tuned by changing the applied DC magnetic field normal to the ferrite substrate. In the numerical simulation and the experiment, the nonreciprocal phase characteristics and leaky wave radiation are investigated for the ferrite substrate with the magnetization not only in the saturated region, but also in the unsaturated region. The numerical simulation results are in good agreement with the measurement. It is confirmed that the beam directions of the obliquely unidirectional leaky wave radiation for two different power directions are continuously tunable.

  • Singular Candidate Method: Improvement of Extended Relational Graph Method for Reliable Detection of Fingerprint Singularity

    Tomohiko OHTSUKA  Daisuke WATANABE  

     
    PAPER

      Vol:
    E93-D No:7
      Page(s):
    1788-1797

    The singular points of fingerprints, viz. core and delta, are important referential points for the classification of fingerprints. Several conventional approaches such as the Poincare index method have been proposed; however, these approaches are not reliable with poor-quality fingerprints. This paper proposes a new core and delta detection employing singular candidate analysis and an extended relational graph. Singular candidate analysis allows the use both the local and global features of ridge direction patterns and realizes high tolerance to local image noise; this involves the extraction of locations where there is high probability of the existence of a singular point. Experimental results using the fingerprint image databases FVC2000 and FVC2002, which include several poor-quality images, show that the success rate of the proposed approach is 10% higher than that of the Poincare index method for singularity detection, although the average computation time is 15%-30% greater.

  • Efficient Modelling Method for Artificial Materials Using Digital Filtering Techniques and EMC Applications

    Hiroki WAKATSUCHI  Stephen GREEDY  John PAUL  Christos CHRISTOPOULOS  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1760-1767

    This paper demonstrates an efficient modelling method for artificial materials using digital filtering (DF) techniques. To demonstrate the efficiency of the DF technique it is applied to an electromagnetic bandgap (EBG) structure and a capacitively-loaded loop the so-called, CLL-based metamaterial. Firstly, this paper describes fine mesh simulations, in which a very small cell size (0.10.10.1 mm3) is used to model the details of an element of the structures to calculate the scattering parameters. Secondly, the scattering parameters are approximated with Padé forms and then factorised. Finally the factorised Padé forms are converted from the frequency domain to the time domain. As a result, the initial features in the fine meshes are effectively embedded into a numerical simulation with the DF boundary, in which the use of a coarse mesh is feasible (1,000 times larger in the EBG structure simulation and 680 times larger in the metamaterial simulation in terms of the volumes). By employing the coarse mesh and removal of the dielectric material calculations, the heavy computational burden required for the fine mesh simulations is mitigated and a fast, efficient and accurate modelling method for the artificial materials is achieved. In the case of the EBG structure the calculation time is reduced from 3 hours to less than 1 minute. In addition, this paper describes an antenna simulation as a specific application example of the DF techniques in electromagnetic compatibility field. In this simulation, an electric field radiated from a dipole antenna is enhanced by the DF boundary which models an artificial magnetic conductor derived from the CLL-based metamaterial. As is shown in the antenna simulation, the DF techniques model efficiently and accurately large-scale configurations.

  • Soft Decoding of Integer Codes and Their Application to Coded Modulation

    Hristo KOSTADINOV  Hiroyoshi MORITA  Noboru IIJIMA  A. J. HAN VINCK  Nikolai MANEV  

     
    PAPER-Information Theory

      Vol:
    E93-A No:7
      Page(s):
    1363-1370

    Integer codes are very flexible and can be applied in different modulation schemes. A soft decoding algorithm for integer codes will be introduced. Comparison of symbol error probability (SEP) versus signal-to-noise ratio (SNR) between soft and hard decoding using integer coded modulation shows us that we can obtain at least 2 dB coding gain. Also, we shall compare our results with trellis coded modulation (TCM) because of their similar decoding schemes and complexity.

  • Electromagnetic Bandgap (EBG) Structures Using Open Stubs to Suppress Power Plane Noise

    Hiroshi TOYAO  Noriaki ANDO  Takashi HARADA  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1754-1759

    A novel approach is proposed for miniaturizing the unit cell size of electromagnetic bandgap (EBG) structures that suppress power plane noise. In this approach, open stubs are introduced into the shunt circuits of these EBG structures. Since the stub length determines the resonant frequencies of the shunt circuit, the proposed structures can maintain the bandgaps at lower frequencies without increasing the unit cell size. The bandgap frequencies were estimated by dispersion analysis based on the Bloch theorem and full-wave simulations. Sample boards of the proposed EBG structures were fabricated with a unit cell size of 2.1 mm. Highly suppressed noise propagation over the estimated frequency range of 1.9-3.6 GHz including the 2.4-GHz wireless-LAN band was experimentally demonstrated.

  • Static Estimation of the Meteorological Visibility Distance in Night Fog with Imagery

    Romain GALLEN  Nicolas HAUTIERE  Eric DUMONT  

     
    PAPER

      Vol:
    E93-D No:7
      Page(s):
    1780-1787

    In this article, we propose a new way to estimate fog extinction at night with a camera. We also propose a method for the classification of fog depending on the forward scattering. We show that a characterization of fog based on the atmospheric extinction parameter only is not sufficient, specifically in the perspective of adaptive lighting for road safety. This method has been validated on synthetic images generated with a semi Monte-Carlo ray tracing software dedicated to fog simulation as well as with experiments in a fog chamber, we present the results and discuss the method, its potential applications and its limits.

  • Suppression of Guard-Trace Resonance by Matched Termination for Reducing Common-Mode Radiation

    Tetsushi WATANABE  Tohlu MATSUSHIMA  Yoshitaka TOYOTA  Osami WADA  Ryuji KOGA  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1746-1753

    We propose a novel technique of matching at both ends of the guard trace to suppress resonance. This approach is derived from the viewpoint that the guard trace acts as a transmission line. We examined that matched termination suppresses guard-trace resonance through simulating a circuit and measuring radiation. We found from these results that the proposed method enables guard-trace voltages to remain low and hence avoids increases in radiation. In addition, we demonstrated that "matched termination at the far end of the guard trace" could suppress guard-trace resonance sufficiently at all frequencies. We eventually found that at least two vias at both ends of the guard trace and only one matching resistor at the far end could suppress guard-trace resonance. With respect to fewer vias, the method we propose has the advantage of reducing restrictions in the printed circuit board layout at the design stage.

  • An Evaluation Method for Anisotropic Absorber Panels Using a Diagonalization Method

    Shinichiro YAMAMOTO  Tohru IWAI  Kenichi HATAKEYAMA  

     
    LETTER

      Vol:
    E93-B No:7
      Page(s):
    1851-1854

    In this paper, an evaluation method for electromagnetic wave absorber with anisotropic reflection properties is discussed. Anisotropic absorber panels have an axis of anisotropy (principal axis). In order to specify the principal axis, the evaluation method based on the diagonalization of reflection coefficient matrix is used. Also, the permittivity of absorber materials is considered.

  • Orientation Field Estimation for Embedded Fingerprint Authentication System

    Wei TANG  Dongju LI  Tsuyoshi ISSHIKI  Hiroaki KUNIEDA  

     
    PAPER-Pattern Recognition

      Vol:
    E93-D No:7
      Page(s):
    1918-1926

    Orientation field (OF) estimation is a fundamental process in fingerprint authentication systems. In this paper, a novel binary pattern based low-cost OF estimation algorithm is proposed. The new method consists of two modules. The first is block-level orientation estimation and averaging in vector space by pixel level orientation statistics. The second is orientation quantization and smoothing. In the second module, the continuous orientation is quantized into fixed orientations with sufficient resolution (interval between fixed orientations). An effective smoothing scheme on the quantized orientation space is also proposed. The proposed algorithm is capable of stably processing poor-quality fingerprint images and is validated by tests conducted on an adaptive OF matching scheme. The proposed algorithm is also implemented into a fingerprint System on Chip (SoC) to comfirm that it satisfies the strict requirements of embedded system.

  • A Scheme for Adaptively Countering Application Layer Security Attacks in Wireless Sensor Networks

    Hae Young LEE  Tae Ho CHO  

     
    PAPER-Network

      Vol:
    E93-B No:7
      Page(s):
    1881-1889

    In wireless sensor networks, adversaries can easily launch application layer attacks, such as false data injection attacks and false vote insertion attacks. False data injection attacks may drain energy resources and waste real world response efforts. False vote insertion attacks would prevent reporting of important information on the field. In order to minimize the damage from such attacks, several prevention based solutions have been proposed by researchers, but may be inefficient in normal condition due to their overhead. Thus, they should be activated upon detection of such attacks. Existing detection based solutions, however, does not address application layer attacks. This paper presents a scheme to adaptively counter false data injection attacks and false vote insertion attacks in sensor networks. The proposed scheme consists of two sub-units: one used to detect the security attacks and the other used to select efficient countermeasures against the attacks. Countermeasures are activated upon detection of the security attacks, with the consideration of the current network status and the attacks. Such adaptive countering approach can conserve energy resources especially in normal condition and provide reliability against false vote insertion attacks.

  • Performance Improvement of Packet Classification for Enabling Differentiated Services

    Pi-Chung WANG  

     
    PAPER

      Vol:
    E93-B No:6
      Page(s):
    1403-1410

    In differentiated services, packet classification is used to categorize incoming packets into multiple forwarding classes based on pre-defined filters and make information accessible for quality of service. Although numerous algorithms have presented novel data structures to improve the search performance of packet classification, the performance of these algorithms are usually limited by the characteristics of filter databases. In this paper, we use a different approach of filter preprocessing to enhance the search performance of packet classification. Before generating the searchable data structures, we cluster filters in a bottom-up manner. The procedure of the filter clustering merges filters with high degrees of similarity. The experimental results show that the technique of filter clustering could significantly improve the search performance of Pruned Tuple Space Search, a notable hash-based algorithm. As compared to the prominent existing algorithms, our enhanced Pruned Tuple Space Search also has superior performance in terms of speed and space.

  • Pairing-Friendly Elliptic Curves with Various Discriminants

    Woo Sug KANG  Ki Taek KIM  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:6
      Page(s):
    1032-1038

    This paper extends the Brezing-Weng method by parameterizing the discriminant D by a polynomial D(x). To date, the maximum of CM discriminant can be adequately addressed is about 14-digits. Thus the degree of the square free part of D(x) has to be sufficiently small. By making the square free part of D(x) a linear monomial, the degree of the square free part is small and by substituting x to some quadratic monomial, pairing-friendly curves with various discriminants can be constructed. In order that a square free part of D(x) is of the form ax, ax has to be a square element as a polynomial representation in a number field. Two methods are introduced to apply this construction. For k = 5, 8, 9, 15, 16, 20, 24 and 28, the proposed method gives smaller ρ value than those in previous studies.

  • Robust Defect Size Measurement Using 3D Modeling for LCD Defect Detection in Automatic Vision Inspection System

    Young-Bok JOO  Chan-Ho HAN  Kil-Houm PARK  

     
    PAPER-Electronic Displays

      Vol:
    E93-C No:6
      Page(s):
    922-928

    LCD Automatic Vision Inspection (AVI) systems automatically detect defect features and measure their sizes via camera vision. AVI systems usually report different measurements on the same defect with some variations on position or rotation mainly because we get different images. This is caused by possible variations in the image acquisition process including optical factors, non-uniform illumination, random noise, and so on. For this reason, conventional area based defect measuring method has some problems in terms of robustness and consistency. In this paper, we propose a new defect size measuring method to overcome these problems. We utilize volume information which is completely ignored in the area based conventional defect measuring method. We choose a bell shape as a defect model for experiment. The results show that our proposed method dramatically improves robustness of defect size measurement. Given proper modeling, the proposed volume based measuring method can be applied to various types of defect for better robustness and consistency.

  • Fourier Magnitude-Based Privacy-Preserving Clustering on Time-Series Data

    Hea-Suk KIM  Yang-Sae MOON  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E93-D No:6
      Page(s):
    1648-1651

    Privacy-preserving clustering (PPC in short) is important in publishing sensitive time-series data. Previous PPC solutions, however, have a problem of not preserving distance orders or incurring privacy breach. To solve this problem, we propose a new PPC approach that exploits Fourier magnitudes of time-series. Our magnitude-based method does not cause privacy breach even though its techniques or related parameters are publicly revealed. Using magnitudes only, however, incurs the distance order problem, and we thus present magnitude selection strategies to preserve as many Euclidean distance orders as possible. Through extensive experiments, we showcase the superiority of our magnitude-based approach.

  • Non-closure Properties of 1-Inkdot Nondeterministic Turing Machines and Alternating Turing Machines with Only Universal States Using Small Space

    Tsunehiro YOSHINAGA  Jianliang XU  Makoto SAKAMOTO  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E93-A No:6
      Page(s):
    1148-1152

    This paper investigates the closure properties of 1-inkdot nondeterministic Turing machines and 1-inkdot alternating Turing machines with only universal states which have sublogarithmic space. We show for example that the classes of sets accepted by these Turing machines are not closed under length-preserving homomorphism, concatenation with regular set, Kleene closure, and complementation.

1201-1220hit(2923hit)