The search functionality is under construction.

Keyword Search Result

[Keyword] SFQ(45hit)

41-45hit(45hit)

  • All-NbN Single Flux Quantum Circuits Based on NbN/AlN/NbN Tunnel Junctions

    Hirotaka TERAI  Zhen WANG  

     
    PAPER-Digital Applications

      Vol:
    E83-C No:1
      Page(s):
    69-74

    We report on the fabrication and operation of all-NbN single flux quantum (SFQ) circuits with resistively shunted NbN/AlN/NbN tunnel junctions fabricated on silicon substrates. The critical current varied by about 5% in 400 NbN/AlN/NbN junction arrays, where the junction area was 88 µm2. Critical current densities of the NbN/AlN/NbN tunnel junctions showed exponential dependence on the deposition time of the AlN barrier. By using the 12-nm-thick Cu film as shunted resistors, non-hysteretic current-voltage characteristics were achieved. From dc-SQUID measurements, the sheet inductance of our NbN stripline was estimated to be around 1.2 pH at 4.2 K. We designed and fabricated circuits consisting of dc/SFQ converters, Josephson transmission lines, and T flip-flop-based SFQ/dc converters. The circuits demonstrated correct operation with a bias margin of more than 15% at 4.2 K.

  • Recent Progress of High-Temperature Superconductor Josephson Junction Technology for Digital Circuit Applications

    Jiro YOSHIDA  

     
    INVITED PAPER-Digital Applications

      Vol:
    E83-C No:1
      Page(s):
    49-59

    Recent progress of high-temperature superconductor Josephson junction technology is reviewed in the light of the future application to digital circuits. Among various types of Josephson junctions so far developed, ramp-edge-type junctions with a barrier layer composed of oxide materials in the vicinity of metal-insulator transition seem to offer a unique opportunity to fulfill all the requirements for digital circuit applications by virtue of their small junction dimensions, overdamped properties and relatively high IcRn product values at the temperature of around 30-40 K. Recently developed interface engineered junctions can be classified as junctions of this type. These junctions also raise an interesting problem in physics concerning the possibility of resonant tunneling of Cooper pairs via localized states in the barrier. From the viewpoint of practical applications, the improvement of the spread of the junction parameters is still a serious challenge to the present fabrication technology. Although interface engineered junctions seem to be most promising in this regard at present, 1σ spread of around 8% in the present fabrication technology is far from satisfactory for the fabrication of large-scale integrated circuits. The detailed understanding of the barrier formation mechanism in the interface engineered junction is indispensable not only for advancing this particular fabrication technology but also for improving other junction technology utilizing ramp-edge structures.

  • Parameter Optimization of Single Flux Quantum Digital Circuits Based on Monte Carlo Yield Analysis

    Nobuyuki YOSHIKAWA  Kaoru YONEYAMA  

     
    PAPER-Digital Applications

      Vol:
    E83-C No:1
      Page(s):
    75-80

    We have developed a parameter optimization tool, Monte Carlo Josephson simulator (MJSIM), for rapid single flux quantum (RSFQ) digital circuits based on a Monte Carlo yield analysis. MJSIM can generate a number of net lists for the JSIM, where all parameter values are varied randomly according to the Gaussian distribution function, and calculate the circuit yields automatically. MJSIM can also produce an improved parameter set using the algorithm of the center-of-gravity method. In this algorithm, an improved parameter vector is derived by calculating the average of parameter vectors inside and outside the operating region. As a case study, we have optimized the circuit parameters of an RS flip-flop, and investigated the validity and efficiency of this optimization method by considering the convergency and initial condition dependence of the final results. We also proposed a method for accelerating the optimization speed by increasing 3σ spreads of the parameter distribution during the optimization.

  • Design Considerations of Data-Driven Self-Timed RSFQ Adder Circuits

    Nobuyuki YOSHIKAWA  Hiroshi TAGO  Kaoru YONEYAMA  

     
    INVITED PAPER-Digital Applications

      Vol:
    E81-C No:10
      Page(s):
    1618-1626

    We have designed rapid single-flux-quantum (RSFQ) adder circuits using two different architectures: one is the conventional architecture employing globally synchronous clocking and the other is the data-driven self-timed (DDST) architecture. It has been pointed out that the timing margin of the RSFQ logic is very sensitive to the circuit parameter variations which are induced by the fabrication process and the device parameter uncertainty. Considering the physical timing in the circuits, we have shown that the DDST architecture is advantageous for realizing RSFQ circuits operating at very high frequencies. We have also calculated the theoretical circuit yield of the DDST adders and shown that a four-bit system operating at 10 GHz is feasible with sufficient operating margin, considering the present 1 kA/cm2 Nb Josephson technology.

  • Investigation of High-Tc Single Flux Quantum Logic Gates

    Kazuo SAITOH  Hiroyuki FUKE  

     
    INVITED PAPER

      Vol:
    E80-C No:10
      Page(s):
    1233-1239

    Logic operations in principle have been demonstrated based on the planar high-Tc Superconducting QUantum Interference Device (SQUID). Two kinds of logic gates were produced by using the focused ion beam (FIB) superconducting weak links fabricated in NdBa2Cu3O7-δ (NBCO) thin films. Logic gates investigated in this paper are (1) an rf-SQUID based logic gate which utilizes threshold characteristics, and (2) a dc-SQUID based logic gate which is an elementary gate of RSFQ circuits. Elementary logic operation such as (1) AND/OR logic and (2) SET-RESET flip-flop operation were successfully obtained in the logic gates. In addition to the present experimental results, some problems and future prospects are also discussed.

41-45hit(45hit)