The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPEC(1274hit)

681-700hit(1274hit)

  • Distributed Dynamic Spectrum Management for Digital Subscriber Lines

    Yu-Sun LIU  Zeng-Jey SU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E90-B No:3
      Page(s):
    491-498

    This paper investigates the dynamic spectrum management problem for digital subscriber lines. Two new distributed dynamic spectrum management algorithms, which improve upon the existing iterative water-filling algorithm, are proposed. Unlike the iterative water-filling algorithm, in which crosstalk interference is reduced by using adaptive power backoff, the new algorithms employ full power and mitigate crosstalk interference by shifting one user's spectrum away from the other's. Simulation results show that the new algorithms achieve significant performance gains over the iterative water-filling algorithm in mixed central office/remote terminal (CO/RT) deployment asymmetric digital subscriber line (ADSL) and upstream very-high bit-rate digital subscriber line (VDSL).

  • Superconductivity for Mass Spectroscopy

    Masataka OHKUBO  

     
    INVITED PAPER

      Vol:
    E90-C No:3
      Page(s):
    550-555

    Time-of-Flight Mass Spectroscopy (TOF-MS) with superconducting detectors has two advantages over MS with conventional ion detectors. First, it is coverage for a very wide range of molecule weight over 1,000,000. Secondly, kinetic energies of accelerated molecules can be measured at impact events one by one. These unique features enable an ultimate detection efficiency of 100% for intact ions and a fragmentation analysis that is critical for top-down proteomics. Superconducting MS is expected to play a role in, for example, the detection of antigen-antibody complexes, which are important for medical diagnosis. In this paper, how superconductivity contributes to MS is described.

  • Highly Accurate Measurement of LN Optical Intensity Modulators by Small RF Inputs

    Tsutomu NAGATSUKA  Yoshihito HIRANO  Yoji ISOTA  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    474-478

    A highly accurate measurement method of parameters of MZ-type LN optical intensity modulators is presented. In this method, a CW optical signal is input to an optical terminal and small CW RF signal is applied to an electrode of the modulator. Then sideband levels of an output optical signal at different bias points are measured by using optical spectrum analyzer. By using 1st order sideband levels which are measured at two different bias conditions, and using a compensation method to measured levels, we can obtain accurate chirp parameter even when very small power of RF signal is applied to the modulator. In this method, the chirp parameter can be obtained in good accuracy when the input RF voltage is only 3% of the halfwave voltage.

  • Spectral Domain Approach to the Scattering Analysis of Coaxial Discontinuities

    Takamichi NAKATA  Hiroaki YOSHITAKE  Kikuo WAKINO  Yu-De LIN  Tohru TANI  Toshihide KITAZAWA  

     
    PAPER-Numerical Techniques, Computational Electromagnetic

      Vol:
    E90-C No:2
      Page(s):
    275-281

    The extended version of spectral domain approach (ESDA) is applied to evaluate the scattering characteristics of discontinuities in coaxial line. Discontinuities may be in inner and/or outer conductor of coaxial line. This method secures the high accuracy by considering the singularities of fields near the conductor edge properly. The computational labor of the new method is far lighter than that of FEM, so that novel method is suitable for the time consuming iterative computation such as fitting procedure in material evaluation or optimization of antenna design.

  • An Efficient Method to Calculate the Convolution Based Reaction Integral Using the Analytical Fourier Transform

    Gianluigi TIBERI  Agostino MONORCHIO  Marco DEGIORGI  Giuliano MANARA  Raj MITTRA  

     
    LETTER-Fundamental Theory of Electromagnetic Fields

      Vol:
    E90-C No:2
      Page(s):
    231-234

    A major step in the numerical solution of electromagnetic scattering problems involves the computation of the convolution based reaction integrals. In this paper a procedure based on the analytical Fourier transform is introduced which allows us to calculate the convolution-based reaction integrals in the spectral domain without evaluating any convolution products directly. A numerical evaluation of the computational cost is presented to show the efficiency of the method when handling electrically large problems.

  • Approximating a Generalization of Metric TSP

    Takuro FUKUNAGA  Hiroshi NAGAMOCHI  

     
    PAPER-Graph Algorithms

      Vol:
    E90-D No:2
      Page(s):
    432-439

    We consider a problem for constructing a minimum cost r-edge-connected multigraph in which degree d(v) of each vertex v ∈ V is specified. In this paper, we propose a 3-approximation algorithm for this problem under the assumption that edge cost is metric, r(u,v) ∈ {1,2} for each u,v ∈ V, and d(v) ≥ 2 for each v ∈ V. This problem is a generalization of metric TSP. We also propose an approximation algorithm for the digraph version of the problem.

  • Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement

    Hiroyoshi TOGO  Naofumi SHIMIZU  Tadao NAGATSUMA  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    436-442

    We have developed a near-field mapping system with a fiber-based electro-optic (EO) probe for microwave antenna characterization. In this probe, an EO crystal is mounted on the tip of an optical fiber through a collimating lens. Since the lens allows the crystal thickness to be lengthened by reducing the loss of an optical beam coupling back to the optical fiber, sensitivity is improved. Because the tip of the EO probe consists of a 1-mm-cubic EO crystal and contains no metallic components, there is very little disturbance of the mapped electric field. Fixing the optical fiber in a thin glass tube provides stable sensitivity during long-term mapping over a large area. The fabricated EO probe has a dynamic range larger than 45 dB, flat sensitivity from 1.95 to 20 GHz, and directivity with cross-axis sensitivity isolation greater than 30 dB. A comparison of the measured and calculated near fields of a dipole antenna showed negligible static or inductive coupling between the EO probe and the dipole antenna. Using a tissue-equivalent phantom to assess the specific absorption rate (SAR), we demonstrated the potential of the EO probe for mapping the electric field with information of amplitude and phase. The EO probe can detect an electric field of less than 0.6 V/m, which corresponds to a SAR of 0.5 mW/kg. This value satisfies the minimum detection limit defined in the regulations for determining SAR. This result shows the potential of the near-field mapping system with the fiber-based EO probe in practical applications.

  • A Numerical Solution for Electromagnetic Scattering from Large Faceted Conducting Bodies by Using Physical Optics-SVD Derived Bases

    Gianluigi TIBERI  Agostino MONORCHIO  Giuliano MANARA  Raj MITTRA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E90-C No:2
      Page(s):
    252-257

    A novel procedure for an efficient and rigorous solution of electromagnetic scattering problems is presented. It is based on the use of universal bases that are obtained by applying the SVD procedure to PO-derived basis functions. These bases, constructed by totally bypassing any matrix-type approach, can be used for all angles of incidence and their use leads to a matrix with relatively small dimensions. The method enables us to solve 2D scattering problems in a computationally efficient and numerically rigorous manner.

  • Self-Adaptive Mobile Agent Population Control in Dynamic Networks Based on the Single Species Population Model

    Tomoko SUZUKI  Taisuke IZUMI  Fukuhito OOSHITA  Toshimitsu MASUZAWA  

     
    PAPER-Distributed Cooperation and Agents

      Vol:
    E90-D No:1
      Page(s):
    314-324

    Mobile-agent-based distributed computing is one of the most promising paradigms to support autonomic computing in a large-scale of distributed system with dynamics and diversity: mobile agents traverse the distributed system and carry out a sophisticated task at each node adaptively. In mobile-agent-based systems, a larger number of agents generally require shorter time to complete the whole task but consume more resources (e.g., processing power and network bandwidth). Therefore, it is indispensable to keep an appropriate number of agents for the application on the mobile-agent-based system. This paper considers the mobile agent population control problem in dynamic networks: it requires adjusting the number of agents to a constant fraction of the current network size. This paper proposes algorithms inspired by the single species population model, which is a well-known population ecology model. These two algorithms are different in knowledge of networks each node requires. The first algorithm requires global information at each node, while the second algorithm requires only the local information. This paper shows by simulations that the both algorithms realize self-adaptation of mobile agent population in dynamic networks, but the second algorithm attains slightly lower accuracy than the first one.

  • Semi-Supervised Classification with Spectral Subspace Projection of Data

    Weiwei DU  Kiichi URAHAMA  

     
    LETTER-Pattern Recognition

      Vol:
    E90-D No:1
      Page(s):
    374-377

    A semi-supervised classification method is presented. A robust unsupervised spectral mapping method is extended to a semi-supervised situation. Our proposed algorithm is derived by linearization of this nonlinear semi-supervised mapping method. Experiments using the proposed method for some public benchmark data reveal that our method outperforms a supervised algorithm using the linear discriminant analysis for the iris and wine data and is also more accurate than a semi-supervised algorithm of the logistic GRF for the ionosphere dataset.

  • Automatic Real-Time Selection and Annotation of Highlight Scenes in Televised Soccer

    Masanori SANO  Ichiro YAMADA  Hideki SUMIYOSHI  Nobuyuki YAGI  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    224-232

    We describe an online method for selecting and annotating highlight scenes in soccer matches being televised. The stadium crowd noise and the play-by-play announcer's voice are used as input signals. Candidate scenes for highlights are extracted from the crowd noise by dynamic thresholding and spectral envelope analysis. Using a dynamic threshold solves the problem in conventional methods of how to determine an appropriate threshold. Semantic-meaning information about the kind of play and the related team and player is extracted from the announcer's commentary by using domain-based rules. The information extracted from the two types of audio input is integrated to generate segment-metadata of highlight scenes. Application of the method to six professional soccer games has confirmed its effectiveness.

  • Inpainting Highlights Using Color Line Projection

    Joung Wook PARK  Kwan Heng LEE  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    250-257

    In this paper we propose a novel method to inpaint highlights and to remove the specularity in the image with specular objects by the color line projection. Color line projection is the method that a color with a surface reflection component is projected near the diffuse color line by following the direction of the specular color line. We use two captured images using different exposure time so that the clue of the original color in a highlight area is searched from two images since the color at the highlight region is distorted and saturated to the illumination color. In the first step of the proposed procedure, the region corresponding to the highlight is generated and the clue of the original highlight color is acquired. In the next step, the color line is generated by the restricted region growing method around the highlight region, and the color line is divided into the diffuse color line and the specular color line. In the final step, pixels near the specular color line are projected onto near the diffuse color line by the color line projection, in which the modified random function is applied to realistically inpaint the highlight. One of advantages in our method is to find the highlight region and the clue of the original color of the highlight with ease. It also efficiently estimates the surface reflection component which is utilized to remove specularity and to inpaint the highlight. The proposed method performs the highlight inpainting and the specular removal simultaneously once the color line is generated. In addition, color line projection with the modified random function can make the result more realistic. We show experimental results from the real images and make a synthesis of the real image and the image modified by the proposed method.

  • Macroscopic Diversity Combining Technique for Forward-Link of CDMA Cellular Systems

    Yuh-Ren TSAI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E90-B No:1
      Page(s):
    69-77

    In CDMA cellular systems, the frequency reuse factor equals one. Therefore, the soft-handoff technology with combining macroscopic diversity was introduced to enhance the link performance. In this work, a novel macroscopic diversity combining scheme is proposed to enhance the link performance of the forward-link. The basic concept of this scheme is to integrate error correction coding into the soft-handoff technology. According to the number of soft-handoff channels, the source information is encoded by a convolutional code with a lower code rate. The coded symbols are then equally distributed to all channels from different BSs to the MS, and each channel carries a disjointed set of coded symbols. For this proposed scheme, no extra transmission power or bandwidth is required. The only cost is a slight increase of the encoding and decoding complexity of the convolutional codes. Numerical and simulation results show that a performance gain of 1 dB in bit energy-to-total noise power density ratio can be obtained as compared with the conventional scheme in the same conditions.

  • Unified Representation for Speculative Scheduling: Generalized Condition Vector

    Kazutoshi WAKABAYASHI  

     
    PAPER-System Level Design

      Vol:
    E89-A No:12
      Page(s):
    3408-3415

    A unified representation for various kinds of speculations and global scheduling algorithms is presented. After introducing several types of local and global speculations, reviewing our conventional method called conditional vector-based list scheduling, and discussing some of its limitations, we introduce the unique notion of generalized condition vectors (GCVs), which can represent most varieties of speculations and multiple branches as a single vector. The unification of parallel branches and partially unresolved nested conditional branches is discussed. Then, a scheduling algorithm using GCVs is proposed. Experimental results show the effectiveness of the GCV-based scheduling method.

  • An Overview of the U.S. and Japanese Approaches to Cognitive Radio and SDR Open Access

    James MILLER  

     
    INVITED PAPER

      Vol:
    E89-B No:12
      Page(s):
    3168-3173

    "Cognitive radio" and "software-defined radio" (SDR) are today an important consideration in major spectrum debates in the United States. The U.S. drafted its first SDR rules in 2001, and since has continued efforts to resolve potential regulatory concerns and facilitate the benefits of the technology. At the same time, Japan has had a very rich experience in the lab with SDR, with significant achievements on many engineering topics. However, the regulatory state of SDR in Japan has not kept pace with the United States. Likewise cognitive radio, while a topic of inquiry, betrays a different focus. The paper explores why the paths for these technologies have diverged in the U.S. and Japan.

  • Synchronization Verification in System-Level Design with ILP Solvers

    Thanyapat SAKUNKONCHAK  Satoshi KOMATSU  Masahiro FUJITA  

     
    PAPER-System Level Design

      Vol:
    E89-A No:12
      Page(s):
    3387-3396

    Concurrency is one of the most important issues in system-level design. Interleaving among parallel processes can cause an extremely large number of different behaviors, making design and verification difficult tasks. In this work, we propose a synchronization verification method for system-level designs described in the SpecC language. Instead of modeling the design with timed FSMs and using a model checker for timed automata (such as UPPAAL or KRONOS), we formulate the timing constraints with equalities/inequalities that can be solved by integer linear programming (ILP) tools. Verification is conducted in two steps. First, similar to other software model checkers, we compute the reachability of an error state in the absence of timing constraints. Then, if a path to an error state exists, its feasibility is checked by using the ILP solver to evaluate the timing constraints along the path. This approach can drastically increase the sizes of the designs that can be verified. Abstraction and abstraction refinement techniques based on the Counterexample-Guided Abstraction Refinement (CEGAR) paradigm are applied.

  • In Situ Observation of Reduction Behavior of Hemoglobin Molecules Adsorbed on Glass Surface

    Masayoshi MATSUI  Akiko NAKAHARA  Akiko TAKATSU  Kenji KATO  Naoki MATSUDA  

     
    PAPER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1741-1745

    In situ observation of the adsorption process and reduction behavior of hemoglobin adsorbed on a bare glass surface was studied using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of hemoglobin adsorbed on the glass surface was almost the same as that of hemoglobin in solution. This result agrees with results previously reported by our group. The adsorbed hemoglobin molecules were also reduced by sodium dithionite solution. The adsorbed hemoglobin molecules still maintained their function in this experimental condition.

  • The AMS Extension to System Level Design Language--SpecC

    Yu LIU  Satoshi KOMATSU  Masahiro FUJITA  

     
    PAPER-System Level Design

      Vol:
    E89-A No:12
      Page(s):
    3397-3407

    Recently, system level design languages (SLDLs), which can describe both hardware and software aspects of the design, are receiving attentions. Analog mixed-signal (AMS) extensions to SLDLs enable current discrete-oriented SLDLs to describe and simulate not only digital systems but also digital-analog mixed-signal systems. In this paper, we present our work on the AMS extension to one of the system level design language--SpecC. The extended language supports designer to describe all the analog, digital and software aspects in a universal language.

  • Verification of Au Nanodot Size Dependence on Coulomb Step Width by Non-contact Atomic-force Spectroscopy

    Yasuo AZUMA  Masayuki KANEHARA  Toshiharu TERANISHI  Yutaka MAJIMA  

     
    LETTER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1755-1757

    We demonstrate single electron counting on an alkanethiol-protected Au nanodot in a double-barrier tunneling structure by noncontact atomic-force spectroscopy (nc-AFS). The Coulomb step width dependence on the Au nanodot diameter is observed. Evaluation of fractional charge Q0 and contact potential difference by nc-AFS reveals a Vd-independent voltage shift due to Q0.

  • Evidences for Adsorption of Heptyl Viologen Cation Radicals in Thin Deposition Layers on ITO Electrodes by Slab Optical Waveguide Spectroscopy

    Yusuke AYATO  Akiko TAKATSU  Kenji KATO  Naoki MATSUDA  

     
    PAPER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1750-1754

    In situ observations were mainly performed by using slab optical waveguide (SOWG) spectroscopy synchronized with potential step measurements to investigate the time dependent spectral change of the adsorbed heptyl viologen cation radicals (HV+) in thin deposition layer on indium-tin-oxide (ITO) electrodes. Several absorption bands, which indicated a monomer and dimer of HV+ were co-adsorbed on ITO electrode surface with a monolayer or a few layers deposition, were observed in UV-visible region. The time dependent spectra yielded some important molecular information for the adsorption phenomena of HV+ on the electrode surface. All observed absorption bands disappeared completely when the electrode potential of -200 mV vs. Ag/AgCl was applied, which indicated the adsorbed HV+ species were electrochemically reoxidized on the ITO electrode.

681-700hit(1274hit)