The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

4621-4624hit(4624hit)

  • Two-Dimensional Monte Carlo Simulation of Resonant-Tunneling Hot Electron Transistors (RHETs)

    Hiroaki OHNISHI  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    200-206

    In two-dimensional simulation of thin-base RHET, we combined three different simulation methods--the Schrödinger equation, the Monte Carlo simulation, and two-dimensional device simulation within a drift and diffusion model. We found that, in the thin-base RHET, the potential distribution differs from that expected from the thick-base RHET. In the thin-base RHET, the potential of the intrinsic base region does not equal that of the base electrode because the intrinsic base region is depleted and the negative emitter voltage (VEB0) raises the potential of both the intrinsic base and the nondoped region under the intrinsic base. There are also modified by the collector voltage. We also show emitter current-voltage characteristics, transfer ratio, and transit time calculated using this method and compare them with results for the one-dimensional case.

  • Knowledge-Based Protocol Design for Computer Communication Systems

    Tetsuo KINOSHITA  Kenji SUGAWARA  Norio SHIRATORI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E75-D No:1
      Page(s):
    156-169

    This paper proposes a knowledge-based design method of a protocol of a communication network system based on the knowledge-based design methodology for computer communication systems. In the proposed method, two knowledge models, i.e., the communication network architecture model (CNAM) and the communication protocol architecture model (CPAM), are introduced and a protocol design task is modeled as a successive transformation process of these knowledge models. Giving CNAM which represents the users' requirements concerning a communication network system, the requirements specification of a protocol is derived from CNAM and represented as CPAM. Then, the detailed requirements specification of a protocol is also derived from CPAM and represented by the formal description technique (FDT-Expressions). The derivations of CPAM and FDT-Expressions are executed by the transformation rules which represent the mappings between knowledge models. Due to formally defined knowledge models and mappings, the proposed method provides a framework of a systematic support of knowledge-based protocol design. In this paper, the formal definitions of CNAM and CPAM are given, then the derivation process of FDT-Expressions of a protocol is also formalized based on these knowledge models. Furthermore, a design example is demonstrated by using LOTOS as one of the FDT-Expressions of a protocol.

  • Image Compression by Vector Quantization of Projection Data

    Hee Bok PARK  Choong Woong LEE  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E75-D No:1
      Page(s):
    148-155

    In this paper, we present a new image compression scheme, Projection-VQ, based on reconstruction from vector quantized projections. We can easily deal with the blocks of larger size in Projection-VQ than in conventional VQ schemes, because the dimension of vectors in projection domain is, in general, much smaller than that in the spatial domain. In Projection-VQ, the image can be reconstructed without destroying edge sharpness in the process since the projection data having the edge information are preferentially transmitted. There are several good algorithms of reconstructing an image from projections. However, we use a new modified reconstruction algorithm suitable for a variable bit rate image coding system. We allocate the bits depending on the characteristics of the block images. Our simulation results show that the performances are superior to the ordinary VQ schemes in PSNR, and that the improvement in subjective image quality is substantial.

  • Transient Electromagnetic Fields on a Conducting Sphere Excited by a Pulsed Plane Wave

    Akira ITOH  Toshio HOSONO  Yuuiti HIRAO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:1
      Page(s):
    107-112

    We studied transient fields on a perfectly conducting sphere excited by a half sine pulse wave and examined the Poynting vectors, the energy densities and the energy velocities of the creeping waves. We used FILT (Fast Inversion of Laplace Transform) method for transient analysis. We compared the amplitudes of the creeping wave with that of steady state high frequency approximation obtained by the Watson transformation. The main results are: (1) We confirmed in the transient response that the pulse propagates clockwise and counterclockwise along the geodesic circumference. (2) In the transient electromagnetic field observed in the E-plane we can recognize creeping waves clearly. (3) The existence of creeping waves is not clear in the H-plane. (4) The pulse wave propagation on the sphere is seen more clearly from the Poynting vectors and the energy densities than the field components. (5) The energy velocity of the wave front is equal to the light velocity as should be. The energy velocity of the wave body becomes smaller with the passage of time. (6) The amplitude of the creeping wave for a beat pulse and the amplitude obtained by the Watson transform for mono spectrum agree in the order of relative error below 25%.

4621-4624hit(4624hit)