It has been recognized that there exist some disparities between properties of continuous control systems and those of discrete ones which are obtained from their continuous counterparts by use of a sampler and zero order hold. This still remains true even if the sampling rate becomes fast enough and sometimes causes unfavorable effects in control systems design. To reconcile with this conflict, use of delta operator has been proposed in place of z-operator recently. This note formulates a delta domain Lyapunov matrix equation and shows that the equation actually mediates the discrete Lyapunov equation and its continuous counterpart.
Hyunkoo KANG Yoon UH Tasuku TAKAGI
We propose a new distributed signal (analog or digital) transmission system which has the immunity against the noisy channel. An information signal in transmitter is distributed by distributor and the distributed signal is transmitted. Received signal is reconstructed by the inverse distributor in receiver. In this system, an impulsive interference noise which disturbs the transmission signal in the channel passes decoder only, and this interference noise is distributed by the inverse distributor while the transmitted signal is reconstructed. Some appended signals make it possible to estimate the noise components which inversely distributed with the Fourier transformation as the distributor. Basing upon this principle, the transmission system will have an ability to suppress the impulsive interference, and the channel will have high noise immunity. The construction of receiver which can eliminate the impulsive noise is derived.
Massimo RUDAN Maria Cristina VECCHI Antonio GNUDI
An automatic optimization system for semiconductor devices has been built-up by fully interfacing an optimizer and a device-analysis code supplemented with sensitivity analysis. The device-analysis code is thought of as a part of a pipeline of simulators. The latters are regarded as subprocesses by the optimizer, which controls their I/O stream. The action of the pipeline is iterated until the optimum set of design parameters is determined. An important feature of the system is that all the derivatives required in the sensitivity analysis are calculated analytically, this providing a substantial improvement in both the numerical accuracy and computational efficiency, and making the scheme attractive from the application standpoint. A few examples of optimization of MOS devices are shown and the performance is reported, indicating that a system of this kind can usefully be exploited in a design environment.
Yukio TAMEGAYA Hideki IKEUCHI Hiroyoshi KUGE Yutaka AKIYAMA Yuukichi HATANAKA Masao ASOU
This paper describes a unified process and device simulation system named P &D Workbench (Process and Device Workbench). The P &D Workbench is an EWS (Engineering Work Station) based system which is connected with MFCs (Main Frame Computers) via networks and can easily execute 2-dimensional process, device, topography and capacitance simulations. Since the P &D Workbench has a supervisor, data-base and excellent user interface using Japanese menu functions and mouse operations, a handling time can be dramatically reduced. The supervisor controls the simulation sequence and file transfer, and manages jobs and files both on EWSs and MFCs, so that plural simulations of splitting conditions can be automatically executed. Short TAT (Turn Around Time) is achieved by selecting an appropriate platform depended on a problem size and MFCs' CPU loads. The effects of the P &D Workbench are shown in examples applied to the development of a 4M-DRAM.
Takao KOBAYASHI Kazuyoshi FUKUSHI Keiichi TOKUDA Satoshi IMAI
This paper proposes a technique for designing two-dimensional (2-D) digital filters approximating an arbitrary magnitude function. The technique is based on 2-D spectral factorization and rational approximation of the complex exponential function. A 2-D spectral factorization technique is used to obtain a recursively computable and stable system with nonsymmetric half-plane support from the desired 2-D magnitude function. Since the obtained system has an exponential function type transfer function and cannot be realized directly in a rational form, a class of realizable 2-D digital filters is introduced to approximate the exponential type transfer function. This class of filters referred to as two-dimensional log magnitude approximation (2-D LMA) filters can be viewed as an extension of the class of 1-D LMA filters to the 2-D case. Filter coefficients are given by the 2-D complex cepstrum coefficients, i.e., the inverse Fourier transform of the logarithm of the given magnitude function, which can be efficiently computed using 2-D FFT algorithm. Consequently, computation of the filter coefficients is straightforward and efficient. A simple stability condition for the 2-D LMA filters is given. Under this condition, the stability of the designed filter is guaranteed. Parallel implementation of the 2-D LMA filters is also discussed. Several examples are presented to demonstrate the design capability.
Fusako HIRABAYASHI Yutaka KASAHARA
Proposed here is an internal representation and mapping method for multimedia information in which retrieval is based on the impression documents desired to make. A user interface design for a system using this method is also proposed. The proposed internal representation and mapping method represents each desired document impression as an axis in a semantic space. Documents are represented as points in the space. Queries are represented as subspaces. The proposed user interface design employs a method of visual presentation of the semantic space. Pictorial examples are given to illustrate the range of impressions represented by the axes. The relations between the axes are represented by dispersion diagrams for the documents stored in the document base. With this method, the user can intuitively decide the appropriate subspace for his needs and can specify it directly. For evaluation purposes, a prototype system has been developed. An image retrieval experiment shows that the proposed internal representation and mapping method and the user interface design provide effective tools for information retrieval.
Kiichi YOSHIARA Fusaoki UCHIKAWA Takashi MIZUOCHI Tadayoshi KITAYAMA Katsuhiro IMADA Iwao KAWAMATA Shigeru MATSUNO Shin UTSUNOMIYA
The characteristics of a LiNbO3 light modulator using the resonant YBa2Cu3Oy superconducting electrode were studied on the basis of the calculated results of surface resistances and transmission losses. The two-fluid model and the conventional transmission theory were used for the calculations. It was found that the modulation depth of this modulator using the YBCO electrode at 77 K was 7.5 times that using the Al electrode at room temperature. The drive voltage for the phase modulation of π radians was estimated to be a very low value of 2.3 V.
Kiichi YOSHIARA Fusaoki UCHIKAWA Takashi MIZUOCHI Tadayoshi KITAYAMA Katsuhiro IMADA Iwao KAWAMATA Shigeru MATSUNO Shin UTSUNOMIYA
The characteristics of a LiNbO3 light modulafor using the resonant YBa2Cu3Oy superconducting electrode were studied on the basis of the calculated results of surface resistances and transmission losses. The two-fluid model and the conventional transmission theory were used for the calculations. It was found that the modulation depth of this modulator using the YBCO electrode at 77 K was 7.5 times that using the Al electrode at room temperature. The drive voltage for the phase modulation of π radians was estimated to be a very low value of 2.3 V.
Kikuo ONO Takeshi TANAKA Jun OHIDA Junichi OHWADA Nobutake KONISHI
Transmittance distribution along a horizontal line in LCDs addressed by amorphous silicon TFTs was investigated using measurements and calculations. Nonuniformity of the distribution, in which the transmittance increased with increasing distance from the left edge of the LCD, was observed in a 10 inch diagonal TFT-LCD. The cause of the nonuniformity was attributed to the decrease in voltage drop due to the gate source parasitic capacitance and the increase in gate voltage fall time due to large line resistance, based on the measurements of voltage drops in TFT test elements and calculations considering the decrease in voltage drop. The distribution could be improved by reducing the line resistance and parasitic capacitance in the actual LCD.
We propose two types of public-key cryptographic schemes based on elliptic curves modulo n, where n is the product of secret large primes p and q. The RSA-type scheme has an encryption function with an odd multiplier. The Rabin-type scheme has an encryption function with a multiplier of 2. The security of the proposed schemes is based on the difficulty of factoring n. Other security characteristics are also discussed. We show some applications to a master key scheme and blind signature scheme.
A method is presented for analyzing the scalar wave scattering from a conducting target of arbitrary shape in random media for both the Dirichlet and Neumann problems. The current generators on the target are introduced and expressed generally by the Yasuura method. When using the current generators, the scattering problem is reduced to the wave propagation problem in random media.