The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] VLSI test(2hit)

1-2hit
  • Delay Defect Diagnosis Methodology Using Path Delay Measurements

    Eun Jung JANG  Jaeyong CHUNG  Jacob A. ABRAHAM  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E98-C No:10
      Page(s):
    991-994

    With aggressive device scaling, timing failures have become more prevalent due to manufacturing defects and process variations. When timing failure occurs, it is important to take corrective actions immediately. Therefore, an efficient and fast diagnosis method is essential. In this paper, we propose a new diagnostic method using timing information. Our method approximately estimates all the segment delays of measured paths in a design, using inequality-constrained least squares methods. Then, the proposed method ranks the possible locations of delay defects based on the difference between estimated segment delays and the expected values of segment delays. The method works well for multiple delay defects as well as single delay defects. Experiment results show that our method yields good diagnostic resolution. With the proposed method, the average first hit rank (FHR), was within 7 for single delay defect and within 8 for multiple delay defects.

  • Test Generation for Test Compression Based on Statistical Coding

    Hideyuki ICHIHARA  Atsuhiro OGAWA  Tomoo INOUE  Akio TAMURA  

     
    PAPER-Test Generation and Modification

      Vol:
    E85-D No:10
      Page(s):
    1466-1473

    Test compression/decompression is an efficient method for reducing the test application cost. In this paper we propose a test generation method for obtaining test-patterns suitable to test compression by statistical coding. In general, an ATPG generates a test-pattern that includes don't-care values. In our method, such don't-care values are specified based on an estimation of the final probability of 0/1 occurrence in the resultant test set. Experimental results show that our method can generate test patterns that are able to be highly compressed by statistical coding, in small computational time.