The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] actuators(6hit)

1-6hit
  • Space Charge Characteristics of Fullerenol and Carbon Nanotube Doped Polyurethane Elastomer (PUE) Actuators

    Jun KYOKANE  Naoki TSUJIMOTO  Mamoru ISHIDA  Masumi FUKUMA  

     
    LETTER-Characterization of Organic Devices

      Vol:
    E87-C No:12
      Page(s):
    2125-2128

    PUE films have been found to exhibit an electrostriction effect. We propose the applying them to a moving device such as an actuator similar to artificial muscles using the electrostriction effect. The actuators are of monomorph type fabricated by PUE film and metal electrodes evaporated at different thickness on the film surfaces. Because these actuators work at a high voltage of more than 1 KV, we controlled the molecular structure of the films by doping C60 or CNT derivatives into PUE so that the actuators could operate under a low voltage. The bends of C60 and CNT-doped actuators were larger than those of non-doped actuators and the working voltage was also low. The force of the actuators increased in proportion to the electric field, and strongly depended on the thickness of the PUE films. Furthermore, in order to clarify the relationship between the stretch of PUE film and the bending mechanism of actuators, we measured the space charge of PUE films using the pulsed electroacoustic method.

  • Actuator Using Electrostriction Effect of Fullerenol-Doped Polyurethane Elastomer (PUE) Films

    Jun KYOKANE  Kenji TSUJIMOTO  Yuki YANAGISAWA  Tsutomu UEDA  Masumi FUKUMA  

     
    PAPER-Nano-interface Controlled Electronic Devices

      Vol:
    E87-C No:2
      Page(s):
    136-141

    Polyurethane elastomer (PUE) films similar to polymer gel materials have been found to exhibit the electrostriction effect. We proposed the application their to a moving device such as an actuator without ionic solvent using the electrostriction effect of PUE. The actuators are of monomorph type fabricated by PUE film and metal electrodes evaporated at different thicknesses on the film surface. Because these actuators work at high voltage more than 1 KV, we controlled the molecular structure of the films by doping C60 derivatives (fullerenol) into PUE so that the actuators could operate under a low voltage. In order to clear the bending mechanism of actuators, we measured the space charge of PUE films using the pulsed electroacoustic method.

  • System Perspective of Electromechanical Devices Development of the NEMS/MEMS Group at National Taiwan University

    Chih-Kung LEE  Wen-Jong WU  Pei-Zen CHANG  Long-Sun HUANG  Shu-Sheng LEE  

     
    PAPER-Emerging Technologies

      Vol:
    E86-C No:6
      Page(s):
    979-987

    Some electromechanical devices and systems produced using MEMS fabrication processes are detailed. Two precision measurement metrologies for inspecting electromechanical products are also described. As the trend of electromechanical devices has been towards smaller and smaller sizes possessing robust mechanisms and powerful functions, micro-electric-mechanical system (MEMS) devices are becoming more the choice for meeting such requirements. Three MEMS examples are discussed in detail in this paper: CMOS compatible sensors, RF/microwave components, and packaged and integrated passive devices. The design thinking of a new free-fall sensor, which is an accelerometer and possesses a surprisingly low frequency response and broad bandwidth, is mentioned. In addition, an AVID (dvanced ibrometer/nterferometer evice) system for measuring tiny displacement as well as a Morphinscope system that has the advantage of a confocal microscope combined with a photon tunneling microscope and both developed by NTU's MEMS/NEMS group, are discussed. The excellent sensing ability of the free-fall sensor and the accuracy resolution of the two measurement systems are proved by experimental verification.

  • Recent Progress in Organic Film Devices for Optics and Electronics

    Keiichi KANETO  Kazuhiro KUDO  Yutaka OHMORI  Mitsuyoshi ONODA  Mitsumasa IWAMOTO  

     
    REVIEW PAPER

      Vol:
    E81-C No:7
      Page(s):
    1009-1019

    Recent technologies of organic film devices are reviewed. New technologies of fabrication and characterization of organic thin films, electro-mechanical conversion materials, and applications for electrical and optical devices are discussed. In this review paper, especially organic light emitting diodes, tunneling junctions using polyimide Langmuir-Blodgett films, tunneling spectroscopy and high-density recording, plastic actuators using conducting polymers, molecular self-assembly process for fabricating organic thin film devices are reviewed.

  • Recent MEMS Research Activities in Japan

    Hiroyuki FUJITA  

     
    INVITED PAPER

      Vol:
    E80-C No:2
      Page(s):
    198-205

    Micromechanisms and actuators which are 10-100 micrometers in size are studied by research groups in universities, national research institutes, and private industries in Japan. Some of them belong to a "Micromachine Technology" project lead by MITI (Ministry of International Trade and Industries). Microfabrication technologies based on both IC-compatible processes and mechanical machining are under development. Application-oriented devices in automobile, communication and information industries are also investigated. The research goal is to build a smart micro system through the integration of moving mechanisms, sensors and electronics on a chip; this is the fusion of mechanics and electronics in the microscopic world. This paper reviews recent activities in MEMS research in Japan.

  • Fabrication of Silicon Dioxide Electrets by Plasma CVD Process for Microsystems, and Evaluation of Their Long-Term Charge Stability

    Mitsuo ICHIYA  Takuro NAKAMURA  Shuji NAKATA  Jacques LEWINER  

     
    PAPER-Components

      Vol:
    E80-C No:1
      Page(s):
    174-183

    Micromachined sensors and actuators applied with electrostatic fields are getting widely developed. At the same time, "electrets," which are dielectrics carrying non-equilibrium permanent space charges or polarization distribution, are in demand because they improve the transducer characteristics. In this paper, we have reported on our successful fabrication of silicon dioxide electrets with extremely superior long-term charge stability by plasma chemical vapor deposition (PCVD). We have also reported on the correlation between the deposition conditions, the long-term charge stability and thermally stimulated current (TSC). Finally, the characterization of the long-term stable electrets will be described and discussed.