The search functionality is under construction.

Keyword Search Result

[Keyword] angular spread(9hit)

1-9hit
  • Double Directional Millimeter Wave Propagation Channel Measurement and Polarimetric Cluster Properties in Outdoor Urban Pico-cell Environment

    Karma WANGCHUK  Kento UMEKI  Tatsuki IWATA  Panawit HANPINITSAK  Minseok KIM  Kentaro SAITO  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/01/16
      Vol:
    E100-B No:7
      Page(s):
    1133-1144

    To use millimeter wave bands in future cellular and outdoor wireless networks, understanding the multipath cluster characteristics such as delay and angular spread for different polarization is very important besides knowing the path loss and other large scale propagation parameters. This paper presents result from analysis of wide-band full polarimetric double directional channel measurement at the millimeter wave band in a typical urban pico-cell environment. Only limited number of multipath clusters with gains ranging from -8dB to -26.8dB below the free space path loss and mainly due to single reflection, double reflection and diffraction, under both line of sight (LOS) and obstructed LOS conditions are seen. The cluster gain and scattering intensity showed strong dependence on polarization. The scattering intensities for ϑ-ϑ polarization were seen to be stronger compared to ϕ-ϕ polarization and on average 6.1dB, 5.6dB and 4.5dB higher for clusters due to single reflection, double reflection and scattering respectively. In each cluster, the paths are highly concentrated in the delay domain with delay spread comparable to the delay resolution of 2.5ns irrespective of polarization. Unlike the scattering intensity, the angular spread of paths in each cluster did not show dependence on polarization. On the base station side, average angular spread in azimuth and in elevation were almost similar with ≤3.3° spread in azimuth and ≤3.2° spread in elevation for ϑ-ϑ polarization. These spreads were slightly smaller than those observed for ϕ-ϕ polarization. On the mobile station side the angular spread in azimuth was much higher compared to the base station side. On average, azimuth angular spread of ≤11.4° and elevation angular spread of ≤5° are observed for ϑ-ϑ polarization. These spreads were slightly larger than in ϕ-ϕ polarization. Knowing these characteristics will be vital for more accurate modeling of the channel, and in system and antenna design.

  • Improved Estimation of Direction-of-Arrival by Adaptive Selection of Algorithms in Angular Spread Environments

    Tomomi AOKI  Yasuhiko TANABE  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:12
      Page(s):
    2454-2462

    This paper proposes a novel direction-of-arrival (DOA) estimation method that can reduce performance degradation due to angular spread. Some algorithms previously proposed for such estimation make assumptions about the distributions of amplitude and phase for incident waves because most DOA estimation algorithms are sensitive to angular spread. However, when the assumptions are inaccurate, these algorithms perform poorly as compared with algorithms without countermeasures against angular spread. In this paper, we propose a method for selecting an appropriate DOA estimation algorithm according to the channel vector of each source signal as estimated by independent component analysis. Computer simulations show that the proposed method can robustly estimate DOA in environments with angular spread.

  • Parameter Estimation of Coherently Distributed Noncircular Signals

    Xuemin YANG  Zhi ZHENG  Guangjun LI  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:7
      Page(s):
    1316-1322

    In this paper, a new parameter estimator for coherently distributed (CD) noncircular (NC) signals is proposed, and can estimate both the central direction-of-arrivals (DOAs) and the angular spreads. It can also be considered as an extended version of the generalized Capon method by using both covariance matrix and an elliptic covariance matrix. The central DOAs and angular spreads are obtained by two-dimensional spectrum-peak searching. Numerical examples illustrate that the proposed method can estimate the central DOAs and the angular spreads when the number of signals is greater than the number of sensors. The proposed method also offers better performance than the methods against which it is compared.

  • Frequency Correlation Characteristics Due to Antenna Configurations in Broadband MIMO Transmission

    Kentaro NISHIMORI  Nobuhiko TACHIKAWA  Yasushi TAKATORI  Riichi KUDO  Koichi TSUNEKAWA  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2438-2445

    Recently, Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) has attracted much attention as a technology achieving high-speed wireless transmission with a limited bandwidth. However, since bit loading and adaptive modulation per sub-carrier should be employed according to the transmission quality of each sub-carrier in MIMO-OFDM, it is very important to understand the frequency correlation characteristics in broadband MIMO channels. This paper investigates the frequency correlation characteristics based on the antenna configuration for actual indoor MIMO channels. The results show that the frequency correlation of the channel capacity for the array antenna configured in the horizontal plane is significantly different compared to that configured in the vertical plane. Moreover, we propose a new cluster model that considers the antenna configuration in both the horizontal and vertical planes to estimate the frequency correlation in broadband MIMO channels.

  • Generalized Spatial Correlation Equations for Antenna Arrays in Wireless Diversity Reception: Exact and Approximate Analyses

    Jie ZHOU  Kenta ISHIZAWA  Shigenobu SASAKI  Shogo MURAMATSU  Hisakazu KIKUCHI  Yoshikuni ONOZATO  

     
    LETTER-Antennas and Propagation

      Vol:
    E87-B No:1
      Page(s):
    204-208

    Multiple antenna systems are promising architectures for overcoming the effects of multi-path interference and increasing the spectrum efficiency. In order to be able to investigate these systems, in this article, we derive generalized spatial correlation equations of a circular antenna array for two typical angular energy distributions: a Gaussian angle distribution and uniform angular distribution. The generalized spatial correlation equations are investigated carefully by exact and approximate analyses.

  • An Adaptive Beamforming Technique for Smart Antennas in WCDMA System

    Weon-cheol LEE  Seungwon CHOI  Jinho CHOI  Minsoo SUK  

     
    LETTER-Antennas and Propagation

      Vol:
    E86-B No:9
      Page(s):
    2838-2843

    A new beamforming technique based on the power method is proposed in this paper. We show that the new technique is quite robust to the angular spread in the received signals making it particularly useful for smart antennas in WCDMA systems. The proposed technique utilizes two primary eigenvectors of the autocovariance matrix of the received data to form the weight vector of a smart antenna. An efficient adaptive procedure combining the power method and deflation method is given to compute the first and second largest eigenvalues with a reasonable complexity and accuracy. To demonstrate the proposed technique, it has been applied to WCDMA signal environment showing its robust and improved performance.

  • Performance of MUSIC and ESPRIT for Joint Estimation of DOA and Angular Spread in Slow Fading Environment

    Jung-Sik JEONG  Kei SAKAGUCHI  Jun-ichi TAKADA  Kiyomichi ARAKI  

     
    LETTER

      Vol:
    E85-B No:5
      Page(s):
    972-977

    It is known that MUSIC and ESPRIT algorithms can estimate simultaneously both the instantaneous Direction of Arrival (DOA) and the instantaneous Angular Spread (AS) in multiple scattering environments. These algorithms use the Extended Array Mode Vector (EAMV) with complex angle. The previous work evaluated the performance of those algorithms by comparing the estimated DOA and the estimated AS with the DOA and the AS given in the EAMV, which uses the first-order approximation. Thus, this evaluation method has not clearly reflected the estimation accuracy of MUSIC and ESPRIT. This paper presents the joint estimation performance of MUSIC and ESPRIT by introducing the criteria for evaluation. For this, the spatial signature (SS) is reconstructed from the estimates of the DOA and the AS, and compared to the true SS in the meaning of data fitting.

  • Optimal Signal Combining Based on DOA and Angular Spread Using Extended Array Mode Vector

    Jung-Sik JEONG  Kei SAKAGUCHI  Jun-ichi TAKADA  Kiyomichi ARAKI  

     
    PAPER-Antenna and Propagation

      Vol:
    E84-B No:11
      Page(s):
    3023-3032

    This paper presents the performance of the Directionally Constrained Minimization of Power (DCMP) and the Zero-Forcing (ZF) in the Angular Spread (AS) environment. To obtain the optimal weights for both methods, the Extended Array Mode Vector (EAMV) is employed. It is known that the EAMV represents the instantaneous AS as well as the instantaneous DOA in the slow fading channel. As a result, it is shown that the DCMP and the ZF using the EAMV estimates can improve the Signal-to-Interference-plus-Noise Ratio (SINR) considerably, as compared with those using the Direction of Arrival (DOA) information only. At the same time, the intrinsic problems causing the performance loss in the DCMP and the ZF are revisited. From this, the reasons for the performance deterioration are analyzed, in relation with the AS, the number of samples, the number of antenna elements, and the spatial correlation coefficient of the signals. It follows that the optimal signal combining techniques using the EAMV estimates can diminish such effects.

  • Generalization of MUSIC Using Extended Array Mode Vector for Joint Estimation of Instantaneous DOA and Angular Spread

    Jung-Sik JEONG  Kei SAKAGUCHI  Kiyomichi ARAKI  Jun-ichi TAKADA  

     
    PAPER-Adaptive Algorithms and Experiments

      Vol:
    E84-B No:7
      Page(s):
    1781-1789

    Recently the effect of the angular spread caused by locally scattered signals in the vicinity of the mobile has received considerable attention. This paper proposes the Extended Array Mode Vector (EAMV) which represents the Instantaneous Angular Spread (IAS) as well as the Instantaneous Direction Of Arrival (IDOA) of the received signal at the Base Station (BS). Using the EAMV, MUSIC algorithm is generalized in order that it is possible to estimate both the IDOA and the IAS. In computer simulations, the estimates of the IDOA and the IAS in the fading situation are evaluated. The results show that the estimates for small angular spread agree well with the given values and demonstrate the validity of the proposed approach.