The search functionality is under construction.

Keyword Search Result

[Keyword] antenna arrays(12hit)

1-12hit
  • A Beam Search Method with Adaptive Beam Width Control Based on Area Size for Initial Access

    Takuto ARAI  Daisei UCHIDA  Tatsuhiko IWAKUNI  Shuki WAI  Naoki KITA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    359-366

    High gain antennas with narrow-beamforming are required to compensate for the high propagation loss expected in high frequency bands such as the millimeter wave and sub-terahertz wave bands, which are promising for achieving extremely high speeds and capacity. However using narrow-beamforming for initial access (IA) beam search in all directions incurs an excessive overhead. Using wide-beamforming can reduce the overhead for IA but it also shrinks the coverage area due to the lower beamforming gain. Here, it is assumed that there are some situations in which the required coverage distance differs depending on the direction from the antenna. For example, the distance to an floor for a ceiling-mounted antenna varies depending on the direction, and the distance to the obstruction becomes the required coverage distance for an antenna installation design that assumes line-of-sight. In this paper, we propose a novel IA beam search scheme with adaptive beam width control based on the distance to shield obstacles in each direction. Simulations and experiments show that the proposed method reduces the overhead by 20%-50% without shrinking the coverage area in shield environments compared to exhaustive beam search with narrow-beamforming.

  • Sidelobe Suppression in Both the E and H Planes Using Slit Layers over a Corporate-Feed Waveguide Slot Array Antenna Consisting of 2×2-Element Radiating Units

    Haruka ARAKAWA  Takashi TOMURA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/03/16
      Vol:
    E103-B No:9
      Page(s):
    960-968

    The sidelobe level at tilts around 30-40 degrees in both the E and H planes due to a tapered excitation of units of 2×2 radiation slots is suppressed by introducing slit layers over a corporate-feed waveguide slot array antenna. The slit layers act as averaging the excitation of the adjacent radiating slots for sidelobe suppression in both planes. A 16×16-element array in the 70GHz band is fabricated. At the design frequency, the sidelobe levels at tilts around 30-40 degrees are suppressed from -25.4dB to -31.3dB in the E-plane and from -27.1dB to -38.9dB in the H-plane simultaneously as confirmed by measurements. They are suppressed over the desired range of 71.0-76.0GHz frequencies, compared to the conventional antenna.

  • Efficient Transceiver Design for Large-Scale SWIPT System with Time-Switching and Power-Splitting Receivers

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/12
      Vol:
    E101-B No:7
      Page(s):
    1744-1751

    The combination of large-scale antenna arrays and simultaneous wireless information and power transfer (SWIPT), which can provide enormous increase of throughput and energy efficiency is a promising key in next generation wireless system (5G). This paper investigates efficient transceiver design to minimize transmit power, subject to users' required data rates and energy harvesting, in large-scale SWIPT system where the base station utilizes a very large number of antennas for transmitting both data and energy to multiple users equipped with time-switching (TS) or power-splitting (PS) receive structures. We first propose the well-known semidefinite relaxation (SDR) and Gaussian randomization techniques to solve the minimum transmit power problems. However, for these large-scale SWIPT problems, the proposed scheme, which is based on conventional SDR method, is not suitable due to its excessive computation costs, and a consensus alternating direction method of multipliers (ADMM) cannot be directly applied to the case that TS or PS ratios are involved in the optimization problem. Therefore, in the second solution, our first step is to optimize the variables of TS or PS ratios, and to achieve simplified problems. After then, we propose fast algorithms for solving these problems, where the outer loop of sequential parametric convex approximation (SPCA) is combined with the inner loop of ADMM. Numerical simulations show the fast convergence and superiority of the proposed solutions.

  • A Cell Searching Technique without Double Counting for a Mobile Station with Multiple Antenna Arrays in Millimeter Wave Cellular Communication Systems

    In Su KIM  Hae-In PARK  Won Young YANG  Yong Soo CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:3
      Page(s):
    739-748

    This paper deals with a beamforming and cell ID detection technique for a mobile station (MS) with multiple antenna arrays in millimeter wave (mm-wave) cellular communication systems. Multiple antenna arrays, required to cover the entire space around the MS, can be used to estimate the direction of arrivals (DoAs) and cell IDs, form beams in the direction of DoAs, select a serving cell in a cooperative manner, and improve BER performance by signal combining. However, a signal may enter the overlapped region formed by two adjacent arrays in the MS, resulting in a double-counting problem during the cell searching period. In this paper, a beamforming and cell detection technique without double-counting is proposed to handle this problem, and they are evaluated by simulation in a simple scenario of an mm-wave cellular system with spatial channel model (SCM).

  • Improving Elevation Estimation Accuracy in DOA Estimation: How Planar Arrays Can Be Modified into 3-D Configuration

    Hiroki MORIYA  Koichi ICHIGE  Hiroyuki ARAI  Takahiro HAYASHI  Hiromi MATSUNO  Masayuki NAKANO  

     
    PAPER-DOA

      Vol:
    E95-A No:10
      Page(s):
    1667-1675

    This paper presents a simple 3-D array configuration for high-resolution 2-D Direction-Of-Arrival (DOA) estimation. Planar array structures like Uniform Rectangular Array (URA) or Uniform Circular Array (UCA) often well estimate azimuth angle but cannot well estimate elevation angle because of short antenna aperture in elevation direction. One may put more number of array elements to improve elevation angle estimation accuracy, however it will require very large hardware and software cost. This paper presents a simple 3-D array structure for high-resolution 2-D DOA estimation only by modifying the height of some array elements in a planar array. Based on the analysis of Cramer-Rao Lower Bound (CRLB) formulation and its dependency on the height of array elements, we develop a simple 3-D array structure which improves elevation angle estimation accuracy while preserving azimuth angle estimation accuracy.

  • Wideband MIMO Compact Antennas with Tri-Polarizations

    Dinh Thanh LE  Masahiro SHINOZAWA  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:7
      Page(s):
    1982-1993

    Two designs of wideband compact MIMO antenna using printed dipoles are proposed in this paper. One is a three-port orthogonal polarization antenna and the other is a cube-six-port antenna. Measured results for the antennas show that they resonate at 2.6 GHz and support a bandwidth of over 400 MHz. The worst mutual coupling for the three-port orthogonal polarization antenna is kept under -20 dB whereas that level of the cube-six-port antenna is -18 dB. A number of experiments are conducted on MIMO systems with these compact antennas and linear antenna arrays. Measured data are analyzed to examine channel characteristics, such as cumulative distribution functions (CDFs) of eigenvalues. Furthermore, the effect of different antenna configurations on channel capacity is highlighted and discussed. A high data rate capacity can be achieved with the compact antennas, particularly from the cube-six-port variant. These antennas might be applied in actual MIMO systems in wireless communications.

  • Antenna Array Calibration Based on Frequency Selection in OFDMA/TDD Systems Open Access

    Yoshitaka HARA  Yasuhiro YANO  Hiroshi KUBO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:10
      Page(s):
    3195-3205

    This paper proposes a new antenna array calibration technique which uses frequency selection in orthogonal frequency division multiple access (OFDMA)/time division duplexing (TDD) systems. In the proposed method, subbands or frequencies of good channel conditions are initially selected for channel measurements. The relative calibration is performed at the selected subbands, which compensates for mismatch of analogue gains in multiple antennas using the measured uplink and downlink channel parameters. Furthermore, the calibration parameters are interpolated in the frequency domain for the whole bandwidth. The proposed calibration maintains accurate channel reciprocity for the whole bandwidth compared to the conventional calibration which does not use the frequency selection. The proposed calibration technique is effective in exploiting channel reciprocity at both base station and terminals with feasible amount of feedback and low-cost operation.

  • Low-Complexity Conjugate Gradient Algorithm for Array Code Acquisition

    Hua-Lung YANG  Wen-Rong WU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1193-1200

    An adaptive array code acquisition for direct-sequence/code-division multiple access (DS/CDMA) systems was recently proposed to enhance the performance of the conventional correlator-based method. The scheme consists of an adaptive spatial and an adaptive temporal filter, and can simultaneously perform beamforming and code-delay estimation. Unfortunately, the scheme uses a least-mean-square (LMS) adaptive algorithm, and its convergence is slow. Although the recursive-least-squares (RLS) algorithm can be applied, the computational complexity will greatly increase. In this paper, we solve the dilemma with a low-complexity conjugate gradient (LCG) algorithm, which can be considered as a special case of a modified conjugate gradient (MCG) algorithm. Unlike the original conjugate gradient (CG) algorithm developed for adaptive applications, the proposed method, exploiting the special structure inherent in the input correlation matrix, requires a low computational-complexity. It can be shown that the computational complexity of the proposed method is on the same order of the LMS algorithm. However, the convergence rate is improved significantly. Simulation results show that the performance of adaptive array code acquisition with the proposed CG algorithm is comparable to that with the original CG algorithm.

  • Block-Toeplitz Fast Integral Equation Solver for Large Finite Periodic and Partially Periodic Array Systems

    Elizabeth H. BLESZYNSKI  Marek K. BLESZYNSKI  Thomas JAROSZEWICZ  

     
    PAPER-Basic Electromagnetic Analysis

      Vol:
    E87-C No:9
      Page(s):
    1586-1594

    We describe elements of a fast integral equation solver for large periodic and partly periodic finite array systems. A key element of the algorithm is utilization (in a rigorous way) of a block-Toeplitz structure of the impedance matrix in conjunction with either conventional Method of Moments (MoM), Fast Multipole Method (FMM), or Fast Fourier Transform (FFT)-based Adaptive Integral Method (AIM) compression techniques. We refer to the resulting algorithms as the (block-)Toeplitz-MoM, (block-)Toeplitz-AIM, or (block-)Toeplitz-FMM algorithms. While the computational complexity of the Toeplitz-AIM and Toeplitz-FMM algorithms is comparable to that of their non-Toeplitz counterparts, they offer a very significant (about two orders of magnitude for problems of the order of five million unknowns) storage reduction. In particular, our comparisons demonstrate, that the Toeplitz-AIM algorithm offers significant advantages in problems of practical interest involving arrays with complex antenna elements. This result follows from the more favorable scaling of the Toeplitz-AIM algorithm for arrays characterized by large number of unknowns in a single array element and applicability of the AIM algorithm to problems requiring strongly sub-wavelength resolution.

  • On the Relation between Ordering Metrics for ZF and MMSE Successive Detection in MIMO Systems

    Anass BENJEBBOUR  Susumu YOSHIDA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:7
      Page(s):
    2021-2027

    Multiple-input multiple-output (MIMO) systems can improve the spectral efficiency of a wireless link, by transmitting several data streams simultaneously from different transmit antennas. However, at the receiver, multi-stream detection is needed for extracting the transmitted data streams from the received signals. This letter considers ordered successive detection (OSD) for multi-stream detection. OSD consists of several stages, and at each stage only one data stream is chosen to be detected among the remaining streams according to a specified ordering metric. OSD has been formulated using both the zero forcing (ZF) and minimum mean square error (MMSE) criteria. This letter clarifies the reason behind the superiority of OSD using the MMSE criterion to OSD using the ZF criterion through the investigation of the relation between their ordering metrics. For uncorrelated MIMO channels, we show that both ordering metrics yield the same performance for OSD using either ZF or MMSE criterion. Accordingly, the superiority of OSD using the MMSE criterion to OSD using the ZF criterion is clarified to be a direct result of the inherent superiority of MMSE nulling to ZF nulling, and to be independent of the ordering operation. Performance comparisons of OSD and maximum likelihood detection are also given for modulation schemes of different sizes.

  • Transmit Diversity Scheme with Power Control for Wireless Communications

    Pingyi FAN  Jianjun LI  Zhigang CAO  

     
    PAPER-Adaptive Algorithms and Experiments

      Vol:
    E84-B No:7
      Page(s):
    1720-1726

    In this paper, we present a new transmit diversity scheme with power control by using two transmit antennas in which the power control unit is added to adaptively suit the channel fading variation. Compared to the transmit diversity scheme (STD, one space time coding scheme) proposed by Alamouti and the traditional maximal ratio combining (MRC) diversity scheme employed at the receiver, simulation results indicate that the new scheme has considerable performance gain. We also discuss the effects of the imperfect channel parameter estimation on the performance of the system. Simulation results show that the new system is more robust to the estimation error of channel fading parameters than the STD. As the signal to noise ratio is relatively high, the diversity scheme with power control is more sensitive to the channel estimation error compared to the MRC. But when the channel estimation accuracy is relatively high, the diversity scheme with power control still has better performance than the ideal MRC as the BER is about 1 10-3.

  • Space Division Multiple Access Considerations in CDMA Cellular Systems

    Pieter van ROOYEN  Michiel P. LOTTER  

     
    INVITED PAPER

      Vol:
    E81-A No:11
      Page(s):
    2251-2260

    Space Division Multiple Access (SDMA) will form an important part of the new Wideband Code Division Multiple Access (WCDMA) standard that will realize the Universal Mobile Telephone System (UMTS). This paper addresses a few issues of importance when SDMA techniques are used in a cellular CDMA system. Firstly, a brief overview of SDMA techniques are presented followed by a theoretical analysis of a SDMA/CDMA system. The analysis is focused on a single cell, multipath Rayleigh fading scenario with imperfect power control. As system performance measure Bit Error Rate (BER) is used to investigate the influence of user location, number of antennas and power control error. An important parameter in a SDMA system is the antenna array element spacing. In our analysis a Uniform Linear Array (ULA) is considered and a measure is defined to determine the optimal antenna element spacing in a CDMA cellular environment. Normally the mobile users in a cell are assumed to be uniformly distributed in cellular performance calculations. To reflect a more realistic situation, we propose a novel probability density function for the non-uniform distribution of the mobile users in the cell. It is shown that multipath and imperfect power control, even with antenna arrays, reduces the system performance substantially.