The search functionality is under construction.

Keyword Search Result

[Keyword] attention(111hit)

61-80hit(111hit)

  • Self-Channel Attention Weighted Part for Person Re-Identification

    Lin DU  Chang TIAN  Mingyong ZENG  Jiabao WANG  Shanshan JIAO  Qing SHEN  Wei BAI  Aihong LU  

     
    LETTER-Image

      Pubricized:
    2020/09/01
      Vol:
    E104-A No:3
      Page(s):
    665-670

    Part based models have been proved to be beneficial for person re-identification (Re-ID) in recent years. Existing models usually use fixed horizontal stripes or rely on human keypoints to get each part, which is not consistent with the human visual mechanism. In this paper, we propose a Self-Channel Attention Weighted Part model (SCAWP) for Re-ID. In SCAWP, we first learn a feature map from ResNet50 and use 1x1 convolution to reduce the dimension of this feature map, which could aggregate the channel information. Then, we learn the weight map of attention within each channel and multiply it with the feature map to get each part. Finally, each part is used for a special identification task to build the whole model. To verify the performance of SCAWP, we conduct experiment on three benchmark datasets, including CUHK03-NP, Market-1501 and DukeMTMC-ReID. SCAWP achieves rank-1/mAP accuracy of 70.4%/68.3%, 94.6%/86.4% and 87.6%/76.8% on three datasets respectively.

  • A Novel Hybrid Network Model Based on Attentional Multi-Feature Fusion for Deception Detection

    Yuanbo FANG  Hongliang FU  Huawei TAO  Ruiyu LIANG  Li ZHAO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2020/09/24
      Vol:
    E104-A No:3
      Page(s):
    622-626

    Speech based deception detection using deep learning is one of the technologies to realize a deception detection system with high recognition rate in the future. Multi-network feature extraction technology can effectively improve the recognition performance of the system, but due to the limited labeled data and the lack of effective feature fusion methods, the performance of the network is limited. Based on this, a novel hybrid network model based on attentional multi-feature fusion (HN-AMFF) is proposed. Firstly, the static features of large amounts of unlabeled speech data are input into DAE for unsupervised training. Secondly, the frame-level features and static features of a small amount of labeled speech data are simultaneously input into the LSTM network and the encoded output part of DAE for joint supervised training. Finally, a feature fusion algorithm based on attention mechanism is proposed, which can get the optimal feature set in the training process. Simulation results show that the proposed feature fusion method is significantly better than traditional feature fusion methods, and the model can achieve advanced performance with only a small amount of labeled data.

  • Neural Architecture Search for Convolutional Neural Networks with Attention

    Kohei NAKAI  Takashi MATSUBARA  Kuniaki UEHARA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/10/26
      Vol:
    E104-D No:2
      Page(s):
    312-321

    The recent development of neural architecture search (NAS) has enabled us to automatically discover architectures of neural networks with high performance within a few days. Convolutional neural networks extract fruitful features by repeatedly applying standard operations (convolutions and poolings). However, these operations also extract useless or even disturbing features. Attention mechanisms enable neural networks to discard information of no interest, having achieved the state-of-the-art performance. While a variety of attentions for CNNs have been proposed, current NAS methods have paid a little attention to them. In this study, we propose a novel NAS method that searches attentions as well as operations. We examined several patterns to arrange attentions and operations, and found that attentions work better when they have their own search space and follow operations. We demonstrate the superior performance of our method in experiments on CIFAR-10, CIFAR-100, and ImageNet datasets. The found architecture achieved lower classification error rates and required fewer parameters compared to those found by current NAS methods.

  • Spatio-Temporal Self-Attention Weighted VLAD Neural Network for Action Recognition

    Shilei CHENG  Mei XIE  Zheng MA  Siqi LI  Song GU  Feng YANG  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2020/10/01
      Vol:
    E104-D No:1
      Page(s):
    220-224

    As characterizing videos simultaneously from spatial and temporal cues have been shown crucial for video processing, with the shortage of temporal information of soft assignment, the vector of locally aggregated descriptor (VLAD) should be considered as a suboptimal framework for learning the spatio-temporal video representation. With the development of attention mechanisms in natural language processing, in this work, we present a novel model with VLAD following spatio-temporal self-attention operations, named spatio-temporal self-attention weighted VLAD (ST-SAWVLAD). In particular, sequential convolutional feature maps extracted from two modalities i.e., RGB and Flow are receptively fed into the self-attention module to learn soft spatio-temporal assignments parameters, which enabling aggregate not only detailed spatial information but also fine motion information from successive video frames. In experiments, we evaluate ST-SAWVLAD by using competitive action recognition datasets, UCF101 and HMDB51, the results shcoutstanding performance. The source code is available at:https://github.com/badstones/st-sawvlad.

  • ECG Classification with Multi-Scale Deep Features Based on Adaptive Beat-Segmentation

    Huan SUN  Yuchun GUO  Yishuai CHEN  Bin CHEN  

     
    PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1403-1410

    Recently, the ECG-based diagnosis system based on wearable devices has attracted more and more attention of researchers. Existing studies have achieved high classification accuracy by using deep neural networks (DNNs), but there are still some problems, such as: imprecise heart beat segmentation, inadequate use of medical knowledge, the same treatment of features with different importance. To address these problems, this paper: 1) proposes an adaptive segmenting-reshaping method to acquire abundant useful samples; 2) builds a set of hand-crafted features and deep features on the inner-beat, beat and inter-beat scale by integrating enough medical knowledge. 3) introduced a modified channel attention module (CAM) to augment the significant channels in deep features. Following the Association for Advancement of Medical Instrumentation (AAMI) recommendation, we classified the dataset into four classes and validated our algorithm on the MIT-BIH database. Experiments show that the accuracy of our model reaches 96.94%, a 3.71% increase over that of a state-of-the-art alternative.

  • A Two-Stage Approach for Fine-Grained Visual Recognition via Confidence Ranking and Fusion

    Kangbo SUN  Jie ZHU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/09/11
      Vol:
    E103-D No:12
      Page(s):
    2693-2700

    Location and feature representation of object's parts play key roles in fine-grained visual recognition. To promote the final recognition accuracy without any bounding boxes/part annotations, many studies adopt object location networks to propose bounding boxes/part annotations with only category labels, and then crop the images into partial images to help the classification network make the final decision. In our work, to propose more informative partial images and effectively extract discriminative features from the original and partial images, we propose a two-stage approach that can fuse the original features and partial features by evaluating and ranking the information of partial images. Experimental results show that our proposed approach achieves excellent performance on two benchmark datasets, which demonstrates its effectiveness.

  • An Attention-Based GRU Network for Anomaly Detection from System Logs

    Yixi XIE  Lixin JI  Xiaotao CHENG  

     
    LETTER-Information Network

      Pubricized:
    2020/05/01
      Vol:
    E103-D No:8
      Page(s):
    1916-1919

    System logs record system states and significant events at various critical points to help debug performance issues and failures. Therefore, the rapid and accurate detection of the system log is crucial to the security and stability of the system. In this paper, proposed is a novel attention-based neural network model, which would learn log patterns from normal execution. Concretely, our model adopts a GRU module with attention mechanism to extract the comprehensive and intricate correlations and patterns embedded in a sequence of log entries. Experimental results demonstrate that our proposed approach is effective and achieve better performance than conventional methods.

  • Siamese Attention-Based LSTM for Speech Emotion Recognition

    Tashpolat NIZAMIDIN  Li ZHAO  Ruiyu LIANG  Yue XIE  Askar HAMDULLA  

     
    LETTER-Engineering Acoustics

      Vol:
    E103-A No:7
      Page(s):
    937-941

    As one of the popular topics in the field of human-computer interaction, the Speech Emotion Recognition (SER) aims to classify the emotional tendency from the speakers' utterances. Using the existing deep learning methods, and with a large amount of training data, we can achieve a highly accurate performance result. Unfortunately, it's time consuming and difficult job to build such a huge emotional speech database that can be applicable universally. However, the Siamese Neural Network (SNN), which we discuss in this paper, can yield extremely precise results with just a limited amount of training data through pairwise training which mitigates the impacts of sample deficiency and provides enough iterations. To obtain enough SER training, this study proposes a novel method which uses Siamese Attention-based Long Short-Term Memory Networks. In this framework, we designed two Attention-based Long Short-Term Memory Networks which shares the same weights, and we input frame level acoustic emotional features to the Siamese network rather than utterance level emotional features. The proposed solution has been evaluated on EMODB, ABC and UYGSEDB corpora, and showed significant improvement on SER results, compared to conventional deep learning methods.

  • End-to-End Multilingual Speech Recognition System with Language Supervision Training

    Danyang LIU  Ji XU  Pengyuan ZHANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2020/03/19
      Vol:
    E103-D No:6
      Page(s):
    1427-1430

    End-to-end (E2E) multilingual automatic speech recognition (ASR) systems aim to recognize multilingual speeches in a unified framework. In the current E2E multilingual ASR framework, the output prediction for a specific language lacks constraints on the output scope of modeling units. In this paper, a language supervision training strategy is proposed with language masks to constrain the neural network output distribution. To simulate the multilingual ASR scenario with unknown language identity information, a language identification (LID) classifier is applied to estimate the language masks. On four Babel corpora, the proposed E2E multilingual ASR system achieved an average absolute word error rate (WER) reduction of 2.6% compared with the multilingual baseline system.

  • Joint Representations of Knowledge Graphs and Textual Information via Reference Sentences

    Zizheng JI  Zhengchao LEI  Tingting SHEN  Jing ZHANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/02/26
      Vol:
    E103-D No:6
      Page(s):
    1362-1370

    The joint representations of knowledge graph have become an important approach to improve the quality of knowledge graph, which is beneficial to machine learning, data mining, and artificial intelligence applications. However, the previous work suffers severely from the noise in text when modeling the text information. To overcome this problem, this paper mines the high-quality reference sentences of the entities in the knowledge graph, to enhance the representation ability of the entities. A novel framework for joint representation learning of knowledge graphs and text information based on reference sentence noise-reduction is proposed, which embeds the entity, the relations, and the words into a unified vector space. The proposed framework consists of knowledge graph representation learning module, textual relation representation learning module, and textual entity representation learning module. Experiments on entity prediction, relation prediction, and triple classification tasks are conducted, results show that the proposed framework can significantly improve the performance of mining and fusing the text information. Especially, compared with the state-of-the-art method[15], the proposed framework improves the metric of H@10 by 5.08% and 3.93% in entity prediction task and relation prediction task, respectively, and improves the metric of accuracy by 5.08% in triple classification task.

  • Neural Machine Translation with Target-Attention Model

    Mingming YANG  Min ZHANG  Kehai CHEN  Rui WANG  Tiejun ZHAO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/11/26
      Vol:
    E103-D No:3
      Page(s):
    684-694

    Attention mechanism, which selectively focuses on source-side information to learn a context vector for generating target words, has been shown to be an effective method for neural machine translation (NMT). In fact, generating target words depends on not only the source-side information but also the target-side information. Although the vanilla NMT can acquire target-side information implicitly by recurrent neural networks (RNN), RNN cannot adequately capture the global relationship between target-side words. To solve this problem, this paper proposes a novel target-attention approach to capture this information, thus enhancing target word predictions in NMT. Specifically, we propose three variants of target-attention model to directly obtain the global relationship among target words: 1) a forward target-attention model that uses a target attention mechanism to incorporate previous historical target words into the prediction of the current target word; 2) a reverse target-attention model that adopts a reverse RNN model to obtain the entire reverse target words information, and then to combine with source context information to generate target sequence; 3) a bidirectional target-attention model that combines the forward target-attention model and reverse target-attention model together, which can make full use of target words to further improve the performance of NMT. Our methods can be integrated into both RNN based NMT and self-attention based NMT, and help NMT get global target-side information to improve translation performance. Experiments on the NIST Chinese-to-English and the WMT English-to-German translation tasks show that the proposed models achieve significant improvements over state-of-the-art baselines.

  • Dual Network Fusion for Person Re-Identification

    Lin DU  Chang TIAN  Mingyong ZENG  Jiabao WANG  Shanshan JIAO  Qing SHEN  Guodong WU  

     
    LETTER-Image

      Vol:
    E103-A No:3
      Page(s):
    643-648

    Feature learning based on deep network has been verified as beneficial for person re-identification (Re-ID) in recent years. However, most researches use a single network as the baseline, without considering the fusion of different deep features. By analyzing the attention maps of different networks, we find that the information learned by different networks can complement each other. Therefore, a novel Dual Network Fusion (DNF) framework is proposed. DNF is designed with a trunk branch and two auxiliary branches. In the trunk branch, deep features are cascaded directly along the channel direction. One of the auxiliary branch is channel attention branch, which is used to allocate weight for different deep features. Another one is multi-loss training branch. To verify the performance of DNF, we test it on three benchmark datasets, including CUHK03NP, Market-1501 and DukeMTMC-reID. The results show that the effect of using DNF is significantly better than a single network and is comparable to most state-of-the-art methods.

  • Spectra Restoration of Bone-Conducted Speech via Attention-Based Contextual Information and Spectro-Temporal Structure Constraint Open Access

    Changyan ZHENG  Tieyong CAO  Jibin YANG  Xiongwei ZHANG  Meng SUN  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    2001-2007

    Compared with acoustic microphone (AM) speech, bone-conducted microphone (BCM) speech is much immune to background noise, but suffers from severe loss of information due to the characteristics of the human-body transmission channel. In this letter, a new method for the speaker-dependent BCM speech enhancement is proposed, in which we focus our attention on the spectra restoration of the distorted speech. In order to better infer the missing components, an attention-based bidirectional Long Short-Term Memory (AB-BLSTM) is designed to optimize the use of contextual information to model the relationship between the spectra of BCM speech and its corresponding clean AM speech. Meanwhile, a structural error metric, Structural SIMilarity (SSIM) metric, originated from image processing is proposed to be the loss function, which provides the constraint of the spectro-temporal structures in recovering of the spectra. Experiments demonstrate that compared with approaches based on conventional DNN and mean square error (MSE), the proposed method can better recover the missing phonemes and obtain spectra with spectro-temporal structure more similar to the target one, which leads to great improvement on objective metrics.

  • Channel and Frequency Attention Module for Diverse Animal Sound Classification

    Kyungdeuk KO  Jaihyun PARK  David K. HAN  Hanseok KO  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/17
      Vol:
    E102-D No:12
      Page(s):
    2615-2618

    In-class species classification based on animal sounds is a highly challenging task even with the latest deep learning technique applied. The difficulty of distinguishing the species is further compounded when the number of species is large within the same class. This paper presents a novel approach for fine categorization of animal species based on their sounds by using pre-trained CNNs and a new self-attention module well-suited for acoustic signals The proposed method is shown effective as it achieves average species accuracy of 98.37% and the minimum species accuracy of 94.38%, the highest among the competing baselines, which include CNN's without self-attention and CNN's with CBAM, FAM, and CFAM but without pre-training.

  • Attentive Sequences Recurrent Network for Social Relation Recognition from Video Open Access

    Jinna LV  Bin WU  Yunlei ZHANG  Yunpeng XIAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2568-2576

    Recently, social relation analysis receives an increasing amount of attention from text to image data. However, social relation analysis from video is an important problem, which is lacking in the current literature. There are still some challenges: 1) it is hard to learn a satisfactory mapping function from low-level pixels to high-level social relation space; 2) how to efficiently select the most relevant information from noisy and unsegmented video. In this paper, we present an Attentive Sequences Recurrent Network model, called ASRN, to deal with the above challenges. First, in order to explore multiple clues, we design a Multiple Feature Attention (MFA) mechanism to fuse multiple visual features (i.e. image, motion, body, and face). Through this manner, we can generate an appropriate mapping function from low-level video pixels to high-level social relation space. Second, we design a sequence recurrent network based on Global and Local Attention (GLA) mechanism. Specially, an attention mechanism is used in GLA to integrate global feature with local sequence feature to select more relevant sequences for the recognition task. Therefore, the GLA module can better deal with noisy and unsegmented video. At last, extensive experiments on the SRIV dataset demonstrate the performance of our ASRN model.

  • Tweet Stance Detection Using Multi-Kernel Convolution and Attentive LSTM Variants

    Umme Aymun SIDDIQUA  Abu Nowshed CHY  Masaki AONO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/25
      Vol:
    E102-D No:12
      Page(s):
    2493-2503

    Stance detection in twitter aims at mining user stances expressed in a tweet towards a single or multiple target entities. Detecting and analyzing user stances from massive opinion-oriented twitter posts provide enormous opportunities to journalists, governments, companies, and other organizations. Most of the prior studies have explored the traditional deep learning models, e.g., long short-term memory (LSTM) and gated recurrent unit (GRU) for detecting stance in tweets. However, compared to these traditional approaches, recently proposed densely connected bidirectional LSTM and nested LSTMs architectures effectively address the vanishing-gradient and overfitting problems as well as dealing with long-term dependencies. In this paper, we propose a neural network model that adopts the strengths of these two LSTM variants to learn better long-term dependencies, where each module coupled with an attention mechanism that amplifies the contribution of important elements in the final representation. We also employ a multi-kernel convolution on top of them to extract the higher-level tweet representations. Results of extensive experiments on single and multi-target benchmark stance detection datasets show that our proposed method achieves substantial improvement over the current state-of-the-art deep learning based methods.

  • Attention-Guided Spatial Transformer Networks for Fine-Grained Visual Recognition

    Dichao LIU  Yu WANG  Jien KATO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/09/04
      Vol:
    E102-D No:12
      Page(s):
    2577-2586

    The aim of this paper is to propose effective attentional regions for fine-grained visual recognition. Based on the Spatial Transformers' capability of spatial manipulation within networks, we propose an extension model, the Attention-Guided Spatial Transformer Networks (AG-STNs). This model can guide the Spatial Transformers with hard-coded attentional regions at first. Then such guidance can be turned off, and the network model will adjust the region learning in terms of the location and scale. Such adjustment is conditioned to the classification loss so that it is actually optimized for better recognition results. With this model, we are able to successfully capture detailed attentional information. Also, the AG-STNs are able to capture attentional information in multiple levels, and different levels of attentional information are complementary to each other in our experiments. A fusion of them brings better results.

  • Attention-Guided Region Proposal Network for Pedestrian Detection

    Rui SUN  Huihui WANG  Jun ZHANG  Xudong ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/08
      Vol:
    E102-D No:10
      Page(s):
    2072-2076

    As a research hotspot and difficulty in the field of computer vision, pedestrian detection has been widely used in intelligent driving and traffic monitoring. The popular detection method at present uses region proposal network (RPN) to generate candidate regions, and then classifies the regions. But the RPN produces many erroneous candidate areas, causing region proposals for false positives to increase. This letter uses improved residual attention network to capture the visual attention map of images, then normalized to get the attention score map. The attention score map is used to guide the RPN network to generate more precise candidate regions containing potential target objects. The region proposals, confidence scores, and features generated by the RPN are used to train a cascaded boosted forest classifier to obtain the final results. The experimental results show that our proposed approach achieves highly competitive results on the Caltech and ETH datasets.

  • Multi-Level Attention Based BLSTM Neural Network for Biomedical Event Extraction

    Xinyu HE  Lishuang LI  Xingchen SONG  Degen HUANG  Fuji REN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/04/26
      Vol:
    E102-D No:9
      Page(s):
    1842-1850

    Biomedical event extraction is an important and challenging task in Information Extraction, which plays a key role for medicine research and disease prevention. Most of the existing event detection methods are based on shallow machine learning methods which mainly rely on domain knowledge and elaborately designed features. Another challenge is that some crucial information as well as the interactions among words or arguments may be ignored since most works treat words and sentences equally. Therefore, we employ a Bidirectional Long Short Term Memory (BLSTM) neural network for event extraction, which can skip handcrafted complex feature extraction. Furthermore, we propose a multi-level attention mechanism, including word level attention which determines the importance of words in a sentence, and the sentence level attention which determines the importance of relevant arguments. Finally, we train dependency word embeddings and add sentence vectors to enrich semantic information. The experimental results show that our model achieves an F-score of 59.61% on the commonly used dataset (MLEE) of biomedical event extraction, which outperforms other state-of-the-art methods.

  • Attention-Based Dense LSTM for Speech Emotion Recognition Open Access

    Yue XIE  Ruiyu LIANG  Zhenlin LIANG  Li ZHAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1426-1429

    Despite the widespread use of deep learning for speech emotion recognition, they are severely restricted due to the information loss in the high layer of deep neural networks, as well as the degradation problem. In order to efficiently utilize information and solve degradation, attention-based dense long short-term memory (LSTM) is proposed for speech emotion recognition. LSTM networks with the ability to process time series such as speech are constructed into which attention-based dense connections are introduced. That means the weight coefficients are added to skip-connections of each layer to distinguish the difference of the emotional information between layers and avoid the interference of redundant information from the bottom layer to the effective information from the top layer. The experiments demonstrate that proposed method improves the recognition performance by 12% and 7% on eNTERFACE and IEMOCAP corpus respectively.

61-80hit(111hit)