The search functionality is under construction.

Keyword Search Result

[Keyword] back-projection(6hit)

1-6hit
  • A Fast Fabric Defect Detection Framework for Multi-Layer Convolutional Neural Network Based on Histogram Back-Projection

    Guodong SUN  Zhen ZHOU  Yuan GAO  Yun XU  Liang XU  Song LIN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/08/26
      Vol:
    E102-D No:12
      Page(s):
    2504-2514

    In this paper we design a fast fabric defect detection framework (Fast-DDF) based on gray histogram back-projection, which adopts end to end multi-convoluted network model to realize defect classification. First, the back-projection image is established through the gray histogram on fabric image, and the closing operation and adaptive threshold segmentation method are performed to screen the impurity information and extract the defect regions. Then, the defect images segmented by the Fast-DDF are marked and normalized into the multi-layer convolutional neural network for training. Finally, in order to solve the problem of difficult adjustment of network model parameters and long training time, some strategies such as batch normalization of samples and network fine tuning are proposed. The experimental results on the TILDA database show that our method can deal with various defect types of textile fabrics. The average detection accuracy with a higher rate of 96.12% in the database of five different defects, and the single image detection speed only needs 0.72s.

  • Middle-Frequency Based Refinement for Image Super-Resolution

    Jae-Hee JUN  Ji-Hoon CHOI  Jong-Ok KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2015/10/14
      Vol:
    E99-D No:1
      Page(s):
    300-304

    This letter proposes a novel post-processing method for self-similarity based super-resolution (SR). Existing back-projection (BP) methods enhance SR images by refining the reconstructed coarse high-frequency (HF) information. However, it causes artifacts due to interpolation and excessively smoothes small HF signals, particularly in texture regions. Motivated by these observations, we propose a novel post-processing method referred to as middle-frequency (MF) based refinement. The proposed method refines the reconstructed HF information in the MF domain rather than in the spatial domain, as in BP. In addition, it does not require an internal interpolation process, so it is free from the side-effects of interpolation. Experimental results show that the proposed algorithm provides superior performance in terms of both the quantity of reproduced HF information and the visual quality.

  • Estimation of a 3D Bounding Box for a Segmented Object Region in a Single Image

    Sunghoon JUNG  Minhwan KIM  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:11
      Page(s):
    2919-2934

    This paper proposes a novel method for determining a three-dimensional (3D) bounding box to estimate pose (position and orientation) and size of a 3D object corresponding to a segmented object region in an image acquired by a single calibrated camera. The method is designed to work upon an object on the ground and to determine a bounding box aligned to the direction of the object, thereby reducing the number of degrees of freedom in localizing the bounding box to 5 from 9. Observations associated with the structural properties of back-projected object regions on the ground are suggested, which are useful for determining the object points expected to be on the ground. A suitable base is then estimated from the expected on-ground object points by applying to them an assumption of bilateral symmetry. A bounding box with this base is finally constructed by determining its height, such that back-projection of the constructed box onto the ground minimally encloses back-projection of the given object region. Through experiments with some 3D-modelled objects and real objects, we found that a bounding box aligned to the dominant direction estimated from edges with common direction looks natural, and the accuracy of the pose and size is enough for localizing actual on-ground objects in an industrial working space. The proposed method is expected to be used effectively in the fields of smart surveillance and autonomous navigation.

  • Super-Resolution Image Pyramid

    Yao LU  Minoru INAMURA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:8
      Page(s):
    1436-1446

    The existing methods for the reconstruction of a super-resolution image from a sequence of undersampled and subpixel shifted images have to solve a large ill-condition equation group by approximately finding the pseudo-inverse matrix or performing many iterations to approach the solution. The former leads to a big burden of computation, and the latter causes the artifacts or noise to be stressed. In order to solve these problems, in this paper, we consider applying pyramid structure to the super-resolution of the image sequence and present a suitable pyramid framework, called Super-Resolution Image Pyramid (SRIP). Based on the imaging process of the image sequence, the proposed method divides a big back-projection into a series of different levels of small back-projections, thereby avoiding the above problems. As an example, the Iterative Back-Projection (IBP) suggested by Peleg is included in this pyramid framework. Computer simulations and error analyses are conducted and the effectiveness of the proposed framework is demonstrated. The image resolution can be improved better even in the case of severely undersampled images. In addition, the other general super-resolution methods can be easily included in this framework and done in parallel so as to meet the need of real-time processing.

  • Super-Resolution of Undersampled and Subpixel Shifted Image Sequence by Pyramid Iterative BackProjection

    Yao LU  Minoru INAMURA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E85-D No:12
      Page(s):
    1929-1937

    The existing methods for reconstruction of a super-resolution image from undersampled and shubpixel shifted image sequence have two disadvantages. One is that most of them have to perform a lot of computations which lead to taking a lot of time and cannot meet the need of realtime processing. Another is that they cannot achieve satisfactory results in the case that the undersampling rate is too low. This paper considers applying a pyramid structure method to the super-resolution of the image sequence since it has some iterative optimization and parallel processing abilities. Based on the Iterative Back-Projection proposed by Peleg, a practical implementation, called Pyramid Iterative Back-Projection, is presented. The experiments and the error analysis show the effectiveness of this method. The image resolution can be improved better even in the case of severely undersampled images. In addition, the proposed method can be done in parallel and meet the need of real-time processing. The implementation framework of the method can be easily extended to the other general super-resolution methods.

  • Structure and Motion of 3D Moving Objects from Multi-Views

    Takeaki Y. MORI  Satoshi SUZUKI  Takayuki YASUNO  

     
    PAPER

      Vol:
    E78-D No:12
      Page(s):
    1598-1606

    This paper proposes a new method that can robustly recover 3D structure and 3D motion of 3D moving objects from a few multi-views. It recovers 3D feature points by obtaining intersections of back-projection lines which are connected from the camera's optical centers thorough projected feature points on the image planes corresponding to the different cameras. We show that our method needs only six views to suppress false 3D feature points in most cases by discussing the relation between the occurrence probability of false 3D feature points and the number of views. This discussion gives us a criterion to design the optimal multi-camera system for recovering 3D structure and 3D motion of 3D moving objects. An experimental multi-camera system is constructed to confirm the validity of our method. This system can take images from six different views at once and record motion image sequence from each view over a period of a few seconds. It is tested successfully on recovering the 3D structure of Vinus's plaster head and on recovering the 3D structure and 3D motion of a moving hand.