The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] boundary detection(8hit)

1-8hit
  • The Role of Accent and Grouping Structures in Estimating Musical Meter

    Han-Ying LIN  Chien-Chieh HUANG  Wen-Whei CHANG  Jen-Tzung CHIEN  

     
    PAPER-Engineering Acoustics

      Vol:
    E103-A No:4
      Page(s):
    649-656

    This study presents a new method to exploit both accent and grouping structures of music in meter estimation. The system starts by extracting autocorrelation-based features that characterize accent periodicities. Based on the local boundary detection model, we construct grouping features that serve as additional cues for inferring meter. After the feature extraction, a multi-layer cascaded classifier based on neural network is incorporated to derive the most likely meter of input melody. Experiments on 7351 folk melodies in MIDI files indicate that the proposed system achieves an accuracy of 95.76% for classification into nine categories of meters.

  • A Mixture Model for Image Boundary Detection Fusion

    Yinghui ZHANG  Hongjun WANG  Hengxue ZHOU  Ping DENG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1159-1166

    Image boundary detection or image segmentation is an important step in image analysis. However, choosing appropriate parameters for boundary detection algorithms is necessary to achieve good boundary detection results. Image boundary detection fusion with unsupervised parameters can output a final consensus boundary, which is generally better than using unsupervised or supervised image boundary detection algorithms. In this study, we theoretically examine why image boundary detection fusion can work well and we propose a mixture model for image boundary detection fusion (MMIBDF) to achieve good consensus segmentation in an unsupervised manner. All of the segmentation algorithms are treated as new features and the segmentation results obtained by the algorithms are the values of the new features. The MMIBDF is designed to sample the boundary according to a discrete distribution. We present an inference method for MMIBDF and describe the corresponding algorithm in detail. Extensive empirical results demonstrate that MMIBDF significantly outperforms other image boundary detection fusion algorithms and the base image boundary detection algorithms according to most performance indices.

  • A Novel Method for Boundary Detection and Thickness Measurement of Two Adjacent Thin Structures from 3-D MR Images

    Haoyan GUO  Changyong GUO  Yuanzhi CHENG  Shinichi TAMURA  

     
    PAPER-Biological Engineering

      Pubricized:
    2014/10/29
      Vol:
    E98-D No:2
      Page(s):
    412-428

    To determine the thickness from MR images, segmentation, that is, boundary detection, of the two adjacent thin structures (e.g., femoral cartilage and acetabular cartilage in the hip joint) is needed before thickness determination. Traditional techniques such as zero-crossings of the second derivatives are not suitable for the detection of these boundaries. A theoretical simulation analysis reveals that the zero-crossing method yields considerable biases in boundary detection and thickness measurement of the two adjacent thin structures from MR images. This paper studies the accurate detection of hip cartilage boundaries in the image plane, and a new method based on a model of the MR imaging process is proposed for this application. Based on the newly developed model, a hip cartilage boundary detection algorithm is developed. The in-plane thickness is computed based on the boundaries detected using the proposed algorithm. In order to correct the image plane thickness for overestimation due to oblique slicing, a three-dimensional (3-D) thickness computation approach is introduced. Experimental results show that the thickness measurement obtained by the new thickness computation approach is more accurate than that obtained by the existing thickness computation approaches.

  • Improved Sequential Dependency Analysis Integrating Labeling-Based Sentence Boundary Detection

    Takanobu OBA  Takaaki HORI  Atsushi NAKAMURA  

     
    PAPER-Natural Language Processing

      Vol:
    E93-D No:5
      Page(s):
    1272-1281

    A dependency structure interprets modification relationships between words or phrases and is recognized as an important element in semantic information analysis. With the conventional approaches for extracting this dependency structure, it is assumed that the complete sentence is known before the analysis starts. For spontaneous speech data, however, this assumption is not necessarily correct since sentence boundaries are not marked in the data. Although sentence boundaries can be detected before dependency analysis, this cascaded implementation is not suitable for online processing since it delays the responses of the application. To solve these problems, we proposed a sequential dependency analysis (SDA) method for online spontaneous speech processing, which enabled us to analyze incomplete sentences sequentially and detect sentence boundaries simultaneously. In this paper, we propose an improved SDA integrating a labeling-based sentence boundary detection (SntBD) technique based on Conditional Random Fields (CRFs). In the new method, we use CRF for soft decision of sentence boundaries and combine it with SDA to retain its online framework. Since CRF-based SntBD yields better estimates of sentence boundaries, SDA can provide better results in which the dependency structure and sentence boundaries are consistent. Experimental results using spontaneous lecture speech from the Corpus of Spontaneous Japanese show that our improved SDA outperforms the original SDA with SntBD accuracy providing better dependency analysis results.

  • A Corpus-Based Approach for Automatic Thai Unknown Word Recognition Using Boosting Techniques

    Jakkrit TECHO  Cholwich NATTEE  Thanaruk THEERAMUNKONG  

     
    PAPER-Unknown Word Processing

      Vol:
    E92-D No:12
      Page(s):
    2321-2333

    While classification techniques can be applied for automatic unknown word recognition in a language without word boundary, it faces with the problem of unbalanced datasets where the number of positive unknown word candidates is dominantly smaller than that of negative candidates. To solve this problem, this paper presents a corpus-based approach that introduces a so-called group-based ranking evaluation technique into ensemble learning in order to generate a sequence of classification models that later collaborate to select the most probable unknown word from multiple candidates. Given a classification model, the group-based ranking evaluation (GRE) is applied to construct a training dataset for learning the succeeding model, by weighing each of its candidates according to their ranks and correctness when the candidates of an unknown word are considered as one group. A number of experiments have been conducted on a large Thai medical text to evaluate performance of the proposed group-based ranking evaluation approach, namely V-GRE, compared to the conventional naive Bayes classifier and our vanilla version without ensemble learning. As the result, the proposed method achieves an accuracy of 90.930.50% when the first rank is selected while it gains 97.260.26% when the top-ten candidates are considered, that is 8.45% and 6.79% improvement over the conventional record-based naive Bayes classifier and the vanilla version. Another result on applying only best features show 93.930.22% and up to 98.85 0.15% accuracy for top-1 and top-10, respectively. They are 3.97% and 9.78% improvement over naive Bayes and the vanilla version. Finally, an error analysis is given.

  • Salient Edge Detection in Natural Images

    Yihang BO  Siwei LUO  Qi ZOU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E92-D No:5
      Page(s):
    1209-1212

    Salient edge detection which is mentioned less frequently than salient point detection is another important cue for subsequent processing in computer vision. How to find the salient edges in natural images is not an easy work. This paper proposes a simple method for salient edge detection which preserves the edges with more salient points on the boundaries and cancels the less salient ones or noise edges in natural images. According to the Gestalt Principles of past experience and entirety, we should not detect the whole edges in natural images. Only salient ones can be an advantageous tool for the following step just like object tracking, image segmentation or contour detection. Salient edges can also enhance the efficiency of computing and save the space of storage. The experiments show the promising results.

  • Visual Attention Guided Multi-Scale Boundary Detection in Natural Images for Contour Grouping

    Jingjing ZHONG  Siwei LUO  Qi ZOU  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E92-D No:3
      Page(s):
    555-558

    Boundary detection is one of the most studied problems in computer vision. It is the foundation of contour grouping, and initially affects the performance of grouping algorithms. In this paper we propose a novel boundary detection algorithm for contour grouping, which is a selective attention guided coarse-to-fine scale pyramid model. Our algorithm evaluates each edge instead of each pixel location, which is different from others and suitable for contour grouping. Selective attention focuses on the whole saliency objects instead of local details, and gives global spatial prior for boundary existence of objects. The evolving process of edges through the coarsest scale to the finest scale reflects the importance and energy of edges. The combination of these two cues produces the most saliency boundaries. We show applications for boundary detection on natural images. We also test our approach on the Berkeley dataset and use it for contour grouping. The results obtained are pretty good.

  • Boundary Detection in Echocardiographic Images Using Markovian Level Set Method

    Jierong CHENG  Say-Wei FOO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E90-D No:8
      Page(s):
    1292-1300

    Owing to the large amount of speckle noise and ill-defined edges present in echocardiographic images, computer-based boundary detection of the left ventricle has proved to be a challenging problem. In this paper, a Markovian level set method for boundary detection in long-axis echocardiographic images is proposed. It combines Markov random field (MRF) model, which makes use of local statistics with level set method that handles topological changes, to detect a continuous and smooth boundary. Experimental results show that higher accuracy can be achieved with the proposed method compared with two related MRF-based methods.