1-5hit |
New boundary integral equations are proposed for two-port slab waveguides which satisfy single mode condition. The boundary integral equations are combined with the orthogonality of guided mode and non-guided field. They are solved by the standard boundary element method with no use of mode expansion technique. Reflection and transmission coefficients of guided mode are directly determined by the boundary element method. To validate the proposed method, step waveguides for TE wave incidence and triangular rib waveguides for TM wave incidence are investigated by numerical calculations.
The main purpose of this paper is to apply the boundary integral equation (BIE) method to the analysis of spoof localized surface plasmons (spoof LSPs) excited in a perfectly conducting cylinder with longitudinal corrugations. Frequency domain BIE schemes based on electric field integral equation (EFIE), magnetic field integral equation (MFIE) and combined field integral equation (CFIE) formulations are used to solve two-dimensional electromagnetic (EM) problems of scattering from the cylinder illuminated by a transverse electric plane wave. In this approach effects of spoof LSPs are included in the secondary surface current and charge densities resulting from the interaction between the plane wave and the cylinder. Numerical results obtained with the BIE schemes are validated by comparison with that of a recently proposed modal solution based on the metamaterial approximation.
Dao Ngoc CHIEN Kazuo TANAKA Masahiro TANAKA
We show examples of accurate computer-aided design of power coupling between two dielectric slab waveguides of finite length by using the boundary-element method (BEM) based on guided-mode extracted integral equations (GMEIE's). The integral equations derived in this paper can be solved by the conventional BEM. Various properties in numerical calculations of GMEIE's are examined. The reflection and coupling coefficients of the guided wave as well as the scattering power are calculated numerically for the case of incidence TM guided-mode. The presented results are checked by the energy conservation law and reciprocity theorem. The results show that it is possible to design an optimum coupling between two dielectric slab waveguides by using the BEM based on GMEIE's.
In this paper, we present an analysis of the microstrip lines whose strip conductors are of various cross-sections, such as rectangular cross-section, triangle cross-section, and half-cycle cross-section. The method employed is the boundary integral equation method (BIEM). Numerical results for these microstrip lines demonstrate various shape effects of the strip conductor on the characteristics of lines. The processing technique on the convergence of the Green's function is also described.
In the paper a problem of wave scattering from a local penetrable inhomogeneity inside a planar dielectric waveguide is studied. The surface potentials method is applied for the problem and the set of systems of BIE is obtained and analyzed from the view-point of their numerical solution. The effective numerical algorithm based on the Nyström method is proposed. The equations for a scattering diagram and mode conversion coefficients are derived.