The search functionality is under construction.

Keyword Search Result

[Keyword] broad-band(10hit)

1-10hit
  • Broad-Band Circularly Polarized Ring-Slot Array Antenna for Simultaneous Use of the Orthogonal Polarizations

    Sen FENG  Eisuke NISHIYAMA  Masayoshi AIKAWA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1105-1110

    A novel broad-band ring-slot array antenna for simultaneous use of orthogonal polarizations is presented in this paper. In this antenna, the broad-band performance is obtained by integrating a 22 ring-slot array antenna and a broad-band π/2 hybrid circuit. The simultaneous use of the right-hand circular polarization (RHCP) and the left-hand circular polarization (LHCP) is achieved using orthogonal feed circuits on three layers. The both-sided MIC technology is effectively employed in forming this type of slot array antenna. Experimental results show that the proposed antenna has good circular polarization characteristics for both the LHCP and the RHCP. The measured impedance-bandwidth of return loss better than -10 dB are about 47% both for the LHCP and the RHCP. The 3 dB axial ratio bandwidths are 25% (RHCP) and 29% (LHCP). The isolation between the two input ports is better than -35 dB at center frequency of 7.5 GHz.

  • A Robust Broad-Band Beamformer with Spatial and Frequency Derivative Constraints

    Yi CHU  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:2
      Page(s):
    567-577

    In this paper, we propose a set of constraints for adaptive broad-band beamforming in the presence of angular errors. We first present spatial and frequency derivative constraints (SFDC) for the design of the quiescent beamformer response. With the wavelet-based blocking matrices, the proposed generalized sidelobe canceller (GSC) preserves the desired signal, and it is less sensitive to the broad-band noise. To make this beamformer more robust to the directional mismatch, we add a pseudo-interference algorithm in the weight adaptive process. Analysis and simulation results demonstrate that the angular beamwidth is insensitive to the input signal-to-noise ratio (SNR).

  • A C-Ku Band 5-Bit MMIC Phase Shifter Using Optimized Reflective Series/Parallel LC Circuits

    Kenichi MIYAGUCHI  Morishige HIEDA  Yukinobu TARUI  Mikio HATAMOTO  Koh KANAYA  Yoshitada IYAMA  Tadashi TAKAGI  Osami ISHIDA  

     
    PAPER-Active(Phase Shifter)

      Vol:
    E86-C No:12
      Page(s):
    2429-2436

    A C-Ku band 5-bit MMIC phase shifter using optimized reflective series/parallel LC circuits is presented. The proposed circuit has frequency independent characteristics in the case of 180 phase shift, ideally. Also, an ultra-broad-band circuit design theory for the 180 optimized reflective circuit has derived, which gives optimum characteristics compromising between loss and phase shift error. The fabricated 5-bit MMIC phase shifter with SPDT switch has successfully demonstrated a typical insertion loss of 9.4 dB 1.4 dB, and a maximum RMS phase shift error of 7 over the 6 to 18 GHz band. The measured results validate the proposed design theory of the phase shifter.

  • Sound Reproduction System Including Adaptive Compensation of Temperature Fluctuation Effect for Broad-Band Sound Control

    Yosuke TATEKURA  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Applications of Signal Processing

      Vol:
    E85-A No:8
      Page(s):
    1851-1860

    We describe a method of compensating temperature fluctuation by a linear-time-warping processing in a sound reproduction system. This technique is applied to impulse responses of room transfer functions, to achieve a high-quality sound reproduction system, particularly one that treats high-frequency components. First, the impulse responses are measured before and after temperature fluctuation, and the former are converted to the latter by the proposed process. Next, we design inverse filters for the system, and evaluate the improvement of the reproduction accuracy and spectrum distortion. By the compensation method, we can improve the reproduction accuracy at any frequency. Moreover, we propose an adaptive algorithm for the estimation of a suitable warping ratio, using the observed signal of reproduced sound obtained at only one control point. Using the proposed algorithm, we can improve the reproduction accuracy at each control point by about 14 dB, in which a difference in temperature is 1.4.

  • Design of Broad-Band Four-Way Power Divider with 45-Degree Phase Differences between Output Ports

    Hitoshi HAYASHI  Donald A. HITKO  Charles G. SODINI  

     
    LETTER

      Vol:
    E85-C No:3
      Page(s):
    592-594

    This paper describes a simple design of a broad-band four-way power divider with 45-degree phase differences between output ports. In the first stage of our work, we present a new broad-band 90-degree power divider. The phase error of the power divider here is less than one-tenth of the conventional 90-degree branch-line hybrid. Next, an experimental UHF-band four-way power divider using a broad-band 90-degree power divider and two broad-band 45-degree power dividers is presented. Over the frequency range from 0.86 to 1.06 GHz, the experimental four-way power divider exhibits power splits of -6.420.25 dB, return losses of greater than 15 dB, errors in the desired relative-phase difference between output ports of less than 1 degree, and isolation between output ports of greater than 15 dB. This divider is useful for realizing low distortion and high efficiency amplifiers without the need for an isolator.

  • Transmission Performance and Diversity Technique of 100 Mbps Indoor Radio on 37 GHz

    Satoru AIKAWA  Akio SATO  Yuji NAKAYAMA  Satoshi KUROSAKI  Teruaki YOSHIDA  

     
    PAPER-Antennas and Propagation

      Vol:
    E81-B No:4
      Page(s):
    798-805

    This paper presents experimental results obtained in indoor broad-band transmission experiments using a QPSK-100 Mbps modem in the 37 GHz band. Transmission performance is measured at many antenna locations in an office. The zone coverage, defined points where as the BER was less than 10-7, was derived in order to evaluate the possibility of high-speed transmission. It was found that adjusting the receiving antenna position a few centimeters greatly improves the zone coverage in utilizing millimeter waves. This result indicates the effectiveness in improving zone coverage of space diversity reception with an antenna spacing of several centimeters. Experimental results obtained show that zone coverage of up to 70% in the measured range is achieved by space diversity reception. Thus, the feasibility of 100 Mbps indoor wireless transmission, conventionally thought to be impossible, is experimentally confirmed.

  • A Novel Broad-Band MMIC VCO Using an Active Inductor

    Hitoshi HAYASHI  Masahiro MURAGUCHI  

     
    PAPER

      Vol:
    E81-A No:2
      Page(s):
    224-229

    This paper proposes a novel broad-band MMIC VCO using an active inductor. This VCO is composed of a serial resonant circuit, in which the capacitor is in series with an active inductor that has a constant negative resistance. Since the inductance value of this active inductor is inversely proportional to the square of the transconductance and can vary widely with the FETs gate bias control, a broad-band oscillation tuning range can be obtained. Furthermore, since this active inductor can generate a constant negative resistance of more than 50Ω, the proposed VCO can oscillate against a 50Ω output load immediately without using additional impedance transformers. We have fabricated the VCO using a GaAs MESFET process. A frequency tuning range of more than 50%, from 1.56 to 2.85 GHz, with an output power of 4.41.0 dBm, was obtained. With a carrier of 2. 07 GHz, the phase noise at 1-MHz offset was less than -110 dBc/Hz. The chip size was less than 0. 61 mm2, and the power consumption was 80 mW. This broad-band analog design can be used at microwave frequencies in PLL applications as a compact alternative to other types of oscillator circuits.

  • Dual-Frequency Matching Technique and Its Application to an Octave-Band (30-60 GHz) MMIC Amplifier

    Hiroki NAKAJIMA  Masahiro MURAGUCHI  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E80-C No:12
      Page(s):
    1614-1621

    A single-stage dual-frequency matching network that can simultaneously transform a transistor reflection coefficient to zero at two separate frequencies (a lower frequency fL and a higher frequency fH) is proposed. The network is made by adding a shorted stub, the length of which is a quarter-wavelength at fH, to a conventional L-section matching network composed of a series transmission line and an open stub. The concept of dual-frequency matching is based on the fact that the synthesized shunt admittance of the open and shorted stubs changes from capacitive at fH to inductive at fL. By means of the single-stage matching network, broad-band amplifier performance, the bandwidth of which is given as (fH-fL), can be easily obtained with almost the same design procedures and circuit area used for conventional narrow-band amplifiers. In this paper, the function of the dual-frequency matching network is analyzed in detail and an application of the matching technique to a two-stage amplifier is described. A broad-band performance of |S21|>7.4 dB at 27.0-62.5 GHz has been achieved with a GaAs P-HEMT two-stage MMIC amplifier.

  • Fiber Optic Subcarrier Transmission Systems Using Coherence Multiplexing Techniques for Broad-Band Distribution Networks

    Hideyuki UEHARA  Iwao SASASE  Mitsuo YOKOYAMA  

     
    PAPER-Optical Communication

      Vol:
    E80-B No:7
      Page(s):
    1027-1034

    Fiber optic subcarrier transmission system using coherence multiplexing techniques for broad-band distribution networks is proposed. This system makes it possible to improve the laser linewidth requirement and also to eliminate the effect of intermodulation distortion (IMD) which is serious problem in subcarrier multiplexed (SCM) system. In the proposed system, the frequency difference, fo, between the reference light and the signal light makes it possible to generate the broadand FM signal after photodetecting. Thus, an increase in the modulation index provides a corresponding increase in receiver sensitivity. We analyze the fundamental performance of the proposed system and derive the signal-to-noise ratio (SNR) at the output of FM demodulator by taking the threshold effect and spike noise into account. The proposed system can achieve the total capacity in excess of 10 GHz, and thus it is attractive for multichannel broad-band distribution networks.

  • Fundamental Aspects of ESD Phenomena and Its Measurement Techniques

    Masamitsu HONDA  

     
    INVITED PAPER

      Vol:
    E79-B No:4
      Page(s):
    457-461

    This paper clarified fundamental aspects of both triboelectric processes and electrostatic discharge (ESD) phenomena to the electronic systems. A chance for ESD can occur if a charged metal object (steel piped chair, for example) contacts or collides with another metal objects at moderate speed. At metal-metal ESD event, the metal objects act as a radiation antenna in a very short time (some 100ps, for example) which emanates impulsive electromagnetic fields with unipolarity into the surrounding space. Because of ESD at low-voltage (3kV or less) conditions, the direction of electrons movement at the spark gap is always unidirectional and fixed. The spark gap works as a momentary switch and also as a "diode." The dominant fields radiated from the metal objects are impulsive electric fields or impulsive magnetic fields which depend on the metal object's electrical and geometric conditions. This impulsive electromagnetic fields penetrate electronic systems, causing electromagnetic interference (EMI) such as malfunctions or circuit upset. The difference between EMI actions in high-voltage ESD and low-voltage ESD is experimentally analyzed in terms of energy conversion/consumption. A series of experiments revealed that EMI actions due to the metal-metal ESD are not proportional to the charge voltage nor the discharge current. In order to capture single shot impulsive electromagnetic fields very close to the ESD point (wave source), a short monopole antenna as an ultra broad-band field sensor was devised. As for signal transmissions between the short monopole antenna and the instrument (receiver), micro/millimeter wave techniques were applied. The transmission line's minimum band width DC-18.5GHz is required for time domain measurements of low-voltage ESD.