Ryota SHIINA Toshihito FUJIWARA Tomohiro TANIGUCHI Shunsuke SARUWATARI Takashi WATANABE
In order to further reduce the transmission rate of multi-channel satellite broadcast signals, whose carrier-to-noise ratio (CNR fluctuates due to rainfall attenuation, we propose a novel digitized radio-over-fiber (DRoF) -based optical re-transmission system based on adaptive combination compression for ultra-high definition (UHD) broadcasting satellite (BS)/communications satellite (CS) broadcast signals. The proposed system reduces the optical re-transmission rate of BS/CS signals as much as possible while handling input CNR fluctuations. Therefore, the transmission rate of communication signals in time-division multiplexing (TDM) transmission is ensured, and network sharing of communication signals and broadcast signals via passive optical network (PON) is realized. Based on the ITU-R P.618-13 prediction model, an experimental evaluation is performed using estimates of the long-term statistics of attenuation due to rainfall. The attenuation is evaluated as a percentage of the time that long-term re-transmission service is available. It is shown that the proposed system is able to accommodate a wide range of rainfall attenuation and achieve a 99.988% time percentage for the duration of service provision. In order to show the rate reduction effect of the proposed system, the quantization bit reduction effect as a function of the input CNR, which depends on rainfall attenuation, is experimentally confirmed. Experiments show that service operation time of 99.978% can be achieved by 3-bit transmission. This means a 62.5% reduction in transmission rate is realized compared to conventional fixed quantization. Furthermore, the average quantization bit number in our system for service operation times is 3.000, indicating that most service operation times are covered by just 3-bit transmission.
Nayeon KIM Woongsoo NA Byungjun BAE
This article proposes a dynamic linkage service which is a specific service model of integrated broadcast — broadband services based ATSC 3.0. The dynamic linkage service is useful to the viewer who wants to continue watching programs using TV or their personal devices, even after the terrestrial broadcast ends due to the start of the next regular programming. In addition, we verify the feasibility of the proposed extended dynamic linkage service through developed emulation system based on ATSC 3.0. In consideration of the personal network capabilities of the viewer environment, the service was tested with 4K/2K Ultra HD and receiving the service was finished within 4 second over intranet.
4K/8K satellite broadcasting featuring ultra-high definition video and sound was launched in Japan in 2018. This is the first 8K ultra high definition television (UHDTV) broadcasting in the world, with 16 times as many pixels as HDTV and 3D sound with 22.2ch audio. The large amount of information that has to be transmitted means that a new satellite broadcasting transmission system had to be developed. In this paper, we describe this transmission system, focusing on the technology that enables 4K/8K UHDTV satellite broadcasting.
Tomoaki TAKEUCHI Masahiro OKANO Kenichi TSUCHIDA
Long delay multipath is a major cause of the poor reception of digital terrestrial broadcasting signals. The direct solution to this problem in orthogonal frequency division multiplexing (OFDM) system is to make the guard interval (GI) longer than the maximum channel delay. However, given the wide variety in broadcasting channel characteristics, the worst case GI may be twice the value needed which decreases the spectral efficiency and service quality. Therefore, the solution must be implemented on the receiver side. For the next generation broadcasting system, this paper proposes a space division multiplexing (SDM) multiple-input multiple-output (MIMO)-OFDM receiver for a multipath environment whose maximum delay time exceeds the GI length. The proposed system employs the high frequency resolution spatial filters that have the same configuration as the conventional one but operate at four times higher frequency resolution. Computer simulation and laboratory test results are presented to show the effectiveness of the proposed system.
Kazuyoshi SHOGEN Thong PHAM VIET
Two frequency sharing criteria for BSS (Broadcasting-Satellite Service) are enacted in Sect.1 of Annex 1 to Appendix 30 to Radio Regulations. These two criteria are pfd (power flux-density) and EPM (Equivalent Protection Margin) values. In this paper, the two criteria are compared and studied from the view point of applicability to the sharing cases between BSS and BSS. In particular, it is shown that in some cases, the EPM criterion contributes to alleviate the problem of “sensitive satellite network”, i.e., one that has relatively low transmission power and is very weak against interference and blocks the new satellite to enter. Disclaimer The views and positions expressed by the authors are strictly personal and do not constitute, nor can be interpreted as, the position of the International Telecommunication Union on the topics addressed in this paper.
Masafumi NAGASAKA Masaaki KOJIMA Takuma TORII Hiromitsu UTSUMI Koji YAMANAKA Shintaro SHINJO Mitsuhiro SHIMOZAWA Hisashi SUJIKAI
Satellite broadcasting of 4K/8K ultra-high definition television (UHDTV) was launched in Japan in December 2018. Because this system uses the amplitude and phase shift keying (APSK) modulation scheme, there is a need to improve the non-linear characteristics of the satellite transponders. To meet this requirement, we have been developing a 120-W-class Ku-band solid state power amplifier (SSPA) as a replacement for the currently used traveling wave tube amplifier (TWTA). In this study, we developed a gallium-nitride (GaN) SSPA and linearizer (LNZ). The SSPA achieved an output power of 120W while maintaining a power added efficiency (PAE) of 31%. We evaluated the transmission performance of 16APSK in this SSPA channel in comparison with that in the TWTA channel.
In this paper, we propose multidimensional stochastic modeling of priority broadcast in Vehicular Ad hoc Networks (VANET). We focus on the channel switching operation of IEEE 1609.4 in systems that handle different types of safety messages, such as event-driven urgent messages and periodic beacon messages. The model considers the constraints imposed by the channel switching operation. The model also reflects differentiated services that handle different types of messages. We carefully consider the delivery time limit and the number of transmissions of the urgent messages. We also consider the hidden node problem, which has an increased impact on broadcast communications. We use the model in analyzing the relationship between system variables and performance metrics of each message type. The analysis results include confirming that the differentiated services work effectively in providing class specific quality of services under moderate traffic loads, and that the repeated transmission of urgent message is a meaningful countermeasure against the hidden node problem. It is also confirmed that the delivery time limit of urgent message is a crucial factor in tuning the channel switching operation.
Jingjing LIU Chao ZHANG Changyong PAN
In the advanced digital terrestrial/television multimedia broadcasting (DTMB-A) standard, a preamble based on distance detection (PBDD) is adopted for robust synchronization and signalling transmission. However, traditional signalling detection method will completely fail to work under severe frequency selective channels with ultra-long delay spread 0dB echoes. In this paper, a novel transmission parameter signalling detection method is proposed for the preamble in DTMB-A. Compared with the conventional signalling detection method, the proposed scheme works much better when the maximum channel delay is close to the length of the guard interval (GI). Both theoretical analyses and simulation results demonstrate that the proposed algorithm significantly improves the accuracy and robustness of detecting the transmitted signalling.
Kazuyoshi SHOGEN Masashi KAMEI Susumu NAKAZAWA Shoji TANAKA
The indexes of the degradation of C/N, ΔT/T and I/N, which can be converted from one to another, are used to evaluate the impact of interference on the satellite link. However, it is not suitable to intuitively understand how these parameters degrade the quality of services. In this paper, we propose to evaluate the impact of interference on the performance of BSS (Broadcasting Satellite Services) in terms of the increase rate of the outage time caused by the rain attenuation. Some calculation results are given for the 12GHz band BSS in Japan.
Analog and digital collaborative design techniques for wireless SoCs are reviewed in this paper. In wireless SoCs, delicate analog performance such as sensitivity of the receiver is easily degraded due to interferences from digital circuit blocks. On the other hand, an analog performance such as distortion is strongly compensated by digital assist techniques with low power consumption. In this paper, a sensitivity recovery technique using the analog and digital collaborative design, and digital assist techniques to achieve low-power and high-performance analog circuits are presented. Such analog and digital collaborative design is indispensable for wireless SoCs.
Broadcasting and communications networks can be used together to offer hybrid broadcasting services that incorporate a variety of personalized information from communications networks in TV programs. To enable these services, many different applications have to be run on a user terminal, and it is necessary to establish an environment where any service provider can create applications and distribute them to users. The danger is that malicious service providers might distribute applications which may cause user terminals to take undesirable actions. To prevent such applications from being distributed, we propose an application authentication protocol for hybrid broadcasting and communications services. Concretely, we modify a key-insulated signature scheme and apply it to this protocol. In the protocol, a broadcaster distributes a distinct signing key to each service provider that the broadcaster trusts. As a result, users can verify that an application is reliable. If a signed application causes an undesirable action, a broadcaster can revoke the privileges and permissions of the service provider. In addition, the broadcaster can update the signing key. That is, our protocol is secure against leakage of the signing key by the broadcaster and service providers. Moreover, a user terminal uses only one verification key for verifying a signature, so the memory needed for storing the verification key in the user terminal is very small. With our protocol, users can securely receive hybrid services from broadcasting and communications networks.
Nguyen Xuan TIEN Jong Myung RHEE
Broadcasting is the process of sending a message from one node to all the other nodes in a network. Simple flooding is the simplest form of broadcasting in ad hoc wireless networks. Simple flooding provides important control, route discovery, and network information update functionality for unicast and multicast protocols. However, simple flooding generates too many broadcast message duplications in ad hoc wireless networks. Minimum spanning tree (MST)-based flooding has traditionally been used in networks to reduce the broadcast duplications by determining broadcast trees using global topology information. However, MST-based flooding still generates a lot of broadcast traffic duplications. In this paper, we propose an efficient type of flooding, called “minimizing re-transmissions” (MRT), to significantly reduce the broadcast duplications. The purpose of MRT is to minimize the number of retransmitting nodes in an ad hoc wireless network based on the network's link state information. This advantage of minimizing the number of retransmitting nodes significantly reduces broadcast message duplications in ad hoc wireless networks. The performance of MRT is analyzed, evaluated, and compared to that of the simple flooding and the MST-based flooding. Simulations are conducted using the OMNet++ Simulator in order to validate the traffic performance analysis. For our sample network, analytical and simulation results show that MRT reduces broadcast message duplications by about 80% compared to simple flooding and by about 68% compared to MST-based flooding, thus saving a significant amount of network bandwidth and energy. MRT can be used in static or mobile ad hoc wireless networks and in wired networks to implement scalable broadcast communications.
Two spanning trees T1,T2 of a graph G = (V,E) are independent if they are rooted at the same vertex, say r, and for each vertex v ∈ V, the path from r to v in T1 and the path from r to v in T2 have no common vertices and no common edges except for r and v. In general, spanning trees T1,T2,…,Tk of a graph G = (V,E) are independent if they are pairwise independent. A graph G = (V,E) is called a 2-chordal ring and denoted by CR(N,d1,d2), if V = {0,1,…,N-1} and E = {(u,v)|[v-u]N = 1 or [v-u]N = d1 or [v-u]N = d2, 2 ≤ d1 < d2 ≤ N/2}. CR(N,d1,N/2) is 5-connected if N ≥ 8 is even and d1 ≠ N/2-1. We give an algorithm to construct 5 independent spanning trees of CR(N,d1,N/2),N ≥ 8 is even and 2 ≤ d1 ≤ ⌈N/4⌉.
DTNs (Delay/Disruption-Tolerant Networks) composed of mobile nodes in low node-density environments have attracted considerable attention in recent years. In this paper, we propose a CD-BCAST (Contact Duration BroadCAST) mechanism that can reduce the number of message forwardings while maintaining short message delivery delays in DTNs composed of mobile nodes. The key idea behind CD-BCAST is to increase the probability of simultaneous forwarding by intentionally delaying message forwarding based on the contact duration distribution measured by each node. Through simulations, we show that CD-BCAST needs substantially less message forwardings than conventional mechanisms and it does not require parameter tuning under varieties of communication ranges and node densities.
Shosuke SATO Masaharu NAKAGAWA Masahiro IWASAKI Fumihiko IMAMURA
In the case of a disaster such as an earthquake or a tsunami, the city, town, and village administration usually issues an evacuation advisory and other information through the Outdoor Public Address Speakers for the disaster reduction broadcasting system covering its area of jurisdiction. However, in areas those have previous experience of a disaster, people frequently voice the lack of audibility of the disaster reduction broadcast. In this research, we conducted a questionnaire survey on the residents in the central area of Ishinomaki City, Miyagi Prefecture, who are the victims of the Great East Japan Earthquake Disaster, on the audible quality of outdoor public address (PA) speakers of the disaster reduction broadcasting system so as to understand the current state of such broadcasts and to propose ideal methods of sending and receiving information at the time of a future disaster.
In this paper, we propose an analysis of broadcasting in the IEEE 802.11p MAC protocol. We consider multi-channel operation which is specifically designed for VANET (Vehicular Ad hoc Networks) applications. This protocol supports channel switching; the device alternates between the CCH (Control Channel) and the SCH (Service Channel) during the fixed synchronization interval. It helps vehicles with a single transceiver to access the CCH periodically during which time they acquire or broadcast safety-related messages. Confining the broadcasting opportunity to the deterministic CCH interval entails a non-typical approach to the analysis. Our analysis is carried out considering 1) the time dependency of the system behavior caused by the channel switching, 2) the mutual influence among the vehicles using a multi-dimensional stochastic process, and 3) the generation of messages distributed over the CCH interval. The proposed analysis enables the prediction of the successful delivery ratio and the delay of the broadcast messages. Furthermore, we propose a refinement of the analysis to take account of the effects of hidden nodes on the system performance. The simulation results show that the proposed analysis is quite accurate in describing both the delivery ratio and delay, as well as in reflecting the hidden node effects. The benefits derived from the distributed generation of traffic are also evidenced by the results of experiments.
Bo HAO Jun WANG Zhaocheng WANG
This paper presents an efficient multi-service allocation scheme for the digital television terrestrial broadcasting systems in which the fixed service is modulated by orthogonal frequency division multiplexing and quadrature amplitude modulation (OFDM/QAM) with larger FFT size and the added mobile service is modulated by OFDM and offset quadrature amplitude modulation (OQAM) with smaller FFT size. The two different types of services share one 8MHz broadcasting channel. The isotropic orthogonal transform algorithm (IOTA) is chosen as the shaping filter for OQAM because of its isotropic convergence in time and frequency domain and the proper FFT size is selected to maximum the transmission capacity under mobile environment. The corresponding transceiver architecture is also proposed and analyzed. Simulations show that the newly added mobile service generates much less out-of-band interference to the fixed service and has a better performance under fast fading wireless channels.
In this letter, we present a novel interference-aware clustering scheme for cell broadcasting service. The proposed approach is based on a genetic algorithm for re-clustering. Using the genetic algorithm, the suggested method efficiently re-clusters the user nodes when the relays fail in receiving the cell broadcasting message from the base station. The simulation results exhibit that the proposed clustering scheme can maintain much higher capacity than the conventional clustering scheme in the cases of relay outage. The re-clustering method based on genetic algorithm also shows lower complexity than the re-clustering approach based on exhaustive search.
Zaw HTIKE Choong Seon HONG Sungwon LEE
Broadcasting is an essential function in almost all wireless networks. Because of the dynamic nature of environment, broadcasting in cognitive radio ad hoc networks is a great challenge. Cognitive radio network technology has been well studied for more than a decade as a new way to improve the spectral efficiency of wireless networks and numerous precious works have been proposed. However, very few existing works consider how to broadcast messages in cognitive radio networks that operate in multichannel environments and none of these provides a full broadcast mechanism. Therefore, in this paper, we propose a broadcasting mechanism for multichannel cognitive radio ad hoc networks. Then, we analyze the mechanism regarding the speed of message dissemination, number of transmissions, fraction of the users that receive the broadcast message and so forth.
Byeong-No KIM Chan-Ho HAN Kyu-Ik SOHNG
We propose a composite DCT basis line test signal to evaluate the video quality of a DTV encoder. The proposed composite test signal contains a frame index, a calibration square wave, and 7-field basis signals. The results show that the proposed method may be useful for an in-service video quality verifier, using an ordinary oscilloscope instead of special equipment.