Hideyuki KOTO Hiroki FURUYA Hajime NAKAMURA
This paper proposes an adaptive transmission control method for massive and intensive telecommunication traffic generated by communication-broadcasting integrated services. The proposed method adaptively controls data transmissions from viewers depending on the congestion states, so that severe congestion can be effectively avoided. Furthermore, it utilizes the broadcasting channel which is not only scalable, but also reliable for controlling the responses from vast numbers of viewers. The performance of the proposed method is evaluated through experiments on a test bed where approximately one million viewers are emulated. The obtained results quantitatively demonstrate the performance of the proposed method and its effectiveness under massive and intensive traffic conditions.
In this letter, we propose a novel singular value decomposition zero-forcing beamforming (SVD-ZFBF) relaying scheme in the multiuser downlink MIMO broadcasting channel with fixed relays. Based on the processing scheme, we apply SUS [5] to select users at the relay station (RS) and develop a joint power allocation strategy at the base station (BS) and RS. By increasing the power at RS or selecting active users to obtain more multiuser diversity, SVD-ZFBF can approach an upper bound and outperform SVD-ZFDPC [1] with much lower complexity. Moreover, we show that the noise power ratio of RS to users significantly impacts the performance.
This paper proposes a method of improving reception of digital satellite broadcasting in a moving vehicle. According to some studies, the antennas used for mobile reception will be smaller in the next generation and reception will be more difficult because of a fading multipath channel with delays in a low carrier-to-noise ratio. Commonly used approaches to reduce the inter symbol interference caused by a fading multipath channel with delays are pilot sequences and diversity reception. Digital satellite broadcasting, however, does not transmit pilot sequences for channel estimation and it is not possible to install multiple antennas in a vehicle. This paper does not propose any change to the broadcasting standards but discusses how to process currently available digital satellite signals to obtain better results. Our method does not rely on the pilot sequences or diversity reception, but consists of channel estimation and stochastic inference methods. For each task, two methods are proposed. The maximum likelihood estimation and higher order statistics matching methods are proposed for the estimation, and the marginal with the joint probability inference methods are proposed for the stochastic inference. The improvements were confirmed through experiments with numerical simulations and real data. The computational costs are also discussed for future implementation.
Liang CHEN Le JIN Feng HE Hanwen CHENG Lenan WU
In next generation mobile multimedia communications, different wireless access networks are expected to cooperate. However, it is a challenging task to choose an optimal transmission path in this scenario. This paper focuses on the problem of selecting the optimal access network for multicast services in the cooperative mobile and broadcasting networks. An algorithm is proposed, which considers multiple decision factors and multiple optimization objectives. An analytic hierarchy process (AHP) method is applied to schedule the service queue and an artificial neural network (ANN) is used to improve the flexibility of the algorithm. Simulation results show that by applying the AHP method, a group of weight ratios can be obtained to improve the performance of multiple objectives. And ANN method is effective to adaptively adjust weight ratios when users' new waiting threshold is generated.
Takahiro MATSUDA Taku NOGUCHI Tetsuya TAKINE
In this paper, we consider the broadcast storm problem in dense wireless ad hoc networks where interference among densely populated wireless nodes causes significant packet loss. To resolve the problem, we apply randomized network coding (RNC) to the networks. RNC is a completely different approach from existing techniques to resolve the problem, and it reduces the number of outstanding packets in the networks by encoding several packets into a single packet. RNC is a kind of linear network coding, and it is suited to wireless ad hoc networks because it can be implemented in a completely distributed manner. We describe a procedure for implementing the wireless ad hoc broadcasting with RNC. Further, with several simulation scenarios, we provide some insights on the relationship between the system parameters and performance and find that there is the optimal length of coding vectors for RNC in terms of packet loss probability. We also show a guideline for the parameter setting to resolve the broadcast storm problem successfully.
In wireless ad hoc networks, providing an authentication service to verify that the broadcast packet is from the claimed sender without modification, is challenging due mainly to the inherently lossy wireless links. This paper presents a novel Secure and Reliable Broadcasting that reinforces the broadcast authentication with reliability and energy-efficiency capabilities by using the cooperative diversity to superimpose two distinct signals. The proposed protocol achieves significant savings of transmission power and fair assurance of reliability among receivers.
Hiroki IKEDA Jun SUGAWA Yoshihiro ASHI Kenichi SAKAMOTO
We propose an IP broadcasting system architecture using passive optical networks (PON) utilizing the optical broadcast links of a PON with a downstream bandwidth allocation algorithm to provide a multi-channel IP broadcasting service to home subscribers on single broadband IP network infrastructures. We introduce the design and adaptation of the optical broadcast links to effectively broadcast video contents to home subscribers. We present a performance analysis that includes the downstream bandwidth utilization efficiency of the broadcast link and the bandwidth control of the IP broadcasting and Internet data. Our analysis and simulation results show that the proposed system can provide 100 HDTV channels to every user over fiber lines. We also propose an IPTV channel selection mechanism in an ONT by selecting a broadcast stream. We developed and evaluated a prototype that can achieve a 15-msec IPTV channel selection speed.
Keigo HASEGAWA Takeo FUJII Kenta UMEBAYASHI Yukihiro KAMIYA Yasuo SUZUKI
This paper proposes a MAC protocol for efficient broadcasting in wireless ad hoc networks. Pure flooding leads to serious redundant broadcasts, packet contention and packet collisions, known as the broadcast storm problem. This paper focuses on how to reduce the redundant broadcasts. Several protocols to achieve efficient broadcasting have been proposed. However a trade-off exists between the reachability and the broadcasting ratio, which is the ratio of the number of the broadcasting nodes to the number of received nodes. This paper proposes a new MAC protocol for on-demand broadcasting, which is referred to as dialogue-based protocol in order to resolve the trade-off. The dialogue-based protocol employs additional massages which are called as request packets and reply signals. They are exchanged in an on-demand manner, in order that relay candidate nodes recognize its neighbor nodes status whether they have already received the broadcast packets. Finally, by computer simulations, this paper presents that the dialogue-based scheme combines high reachability with low broadcasting ratio by using the low additional massages.
Susumu NAKAZAWA Shoji TANAKA Kazuyoshi SHOGEN
Satellite broadcasting in the 21-GHz band is expected to transmit large-capacity signals such as ultrahigh-definition TV. However, this band suffers from large amounts of rain attenuation. In this regard, we have been studying rain fading mitigation techniques, in which the radiation power is increased locally in the area of heavy rainfall. To design such a satellite broadcasting system, it is necessary to evaluate service availability when using the locally increased beam technique. The rain attenuation data should be derived from the rainfall rate data. We developed a method to transform rainfall rate into rain attenuation in the 21 GHz band. Then, we performed a simulation that applied the method to the analysis of the service availability for an example phased array antenna configuration. The results confirmed the service availability increased with the locally increased beam technique.
This letter presents a simple joint estimation method for residual frequency offset (RFO) and sampling frequency offset (STO) in OFDM-based digital video broadcasting (DVB) systems. The proposed method selects a continual pilot (CP) subset from an unsymmetrically and non-uniformly distributed CP set to obtain an unbiased estimator. Simulation results show that the proposed method using a properly selected CP subset is unbiased and performs robustly.
Yusuke SAKAGUCHI Yuhei NAGAO Masayuki KUROSAKI Hiroshi OCHI
This paper presents discussion about channel fluctuation on channel estimation in digital terrestrial television broadcasting. This channel estimation uses a two-dimensional (2D) filter. In our previous work, only a structure of a lattice is considered for generation of nonrectangular 2D filter. We investigate generation of nonrectangular 2D filter with adaptive method, because we should refer to not only a lattice but also channel conditions. From the computer simulations, we show that bit error rate of the proposed filter is improved compared to that of the filter depending on only lattices.
Energy-efficiency is one of the main concerns in the wireless information dissemination system. This paper presents a wireless broadcast stream organization scheme which enables complex queries (e.g., aggregation queries) to be processed in an energy-efficient way. For efficient processing of complex queries, we propose an approach of broadcasting their pre-computed results with the data stream, wherein the way of replication of index and pre-computation results are investigated. Through analysis and experiments, we show that the new approach can achieve significant performance enhancement for complex queries with respect to the access time and tuning time.
The power reduction of display devices has become an important issue for extending battery life and running time when they are used in digital multimedia broadcasting (DMB) mobile phones. DMB mobile phones generally use 16-bit data per pixel to reduce power consumption even though a liquid crystal display (LCD) graphic controller can support 16-, 18-, and 24-bit data per pixel. Also, the total transmission time of 16-bit data per pixel is only half that for 18- and 24-bit data per pixel. Decoded 24-bit image data in the frame memory of a DMB decoder are asymmetrically truncated to 16-bit image data. This results in a lack of smoothness such as blocking effects and/or pseudo edge artifacts. To solve these problems, the author proposes and implements a new asymmetric pixel data truncation error compensation algorithm using 1-bit least significant bit (LSB) data expansion with correlated color information for the purpose of ensuring smoothness. In the experimental results, the proposed algorithm is able to correct various artifacts.
This letter introduces a simple way of estimating the integer frequency offset (IFO) of OFDM-based digital video broadcasting (DVB) systems. By modifying the conventional maximum likelihood (ML) estimator to include the multi-stage estimation strategy, the IFO estimator is derived. Simulations indicate that the proposed IFO estimator works robustly when compared to ML estimator.
Hakjoo LEE Jonghyun SUH Sungwon JUNG
In mobile computing environments, cache invalidation techiniques are widely used. However, theses techniques require a large-sized invalidation report and show low cache utilization under high server update rate. In this paper, we propose a new cache-level cache invalidation technique called TTCI (Timestamp Tree-based Cache Invalidation technique) to overcome the above two problems. TTCI also supports selective tuning for a cache-level cache invalidation. We show in our experiment that our technique requires much smaller size of cache invalidation report and improves cache utilization.
For hybrid Multimedia-on-Demand (MoD) systems which support broadcast, batch and interactive services, the charging scheme employed plays an important role in the delivery of good service quality to users, while also determining the revenue generated for the service provider. In this letter a new charging scheme is proposed. This scheme provides the same quality of service to the users as previous charging schemes while providing higher revenue. Numerical results are presented to evaluate the performance of the new charging scheme in comparison with previous schemes.
This letter describes experiments conducted to measure the interference effects of two kinds of UWB sources, which are OFDM UWB source and pulse radio UWB source, to broadcasting relay system and SDMB system. The received power degradation of a broadcasting system is presented. experimental results show that UWB system can coexist 35 m distance as close as to in-band broadcasting network and can also coexist 1.8 m as close as with the SDMB terminal without causing any dangerous interference.
I Gusti Bagus Baskara NUGRAHA Sumiya MARUGAMI Mikihiko NISHIARA Hiroyoshi MORITA
In this paper, we propose a protocol for multicast communication called Multicast Datagram Transfer Protocol (MDTP) to provide multicast for video broadcasting service on the Internet. MDTP is a one-to-many multicast communication protocol, which is constructed based on IPv4 unicast protocol by utilizing IP Router Alert Option, and it uses unicast addressing and unicast routing protocol. A mechanism is presented to allow a router to remove identical video stream, to duplicate a video stream, and to forward each copy of the duplicated video stream to its destinations. Ordinary IP routers that do not support MDTP will treat the MDTP packets as normal unicast packets. Hence, gradual deployment is possible without tunneling technique. With a delegation mechanism, MDTP router is also able to handle request from clients, and serve the requested video stream. The simulation results show that the average bandwidth usage of MDTP is close to the average bandwidth usage of IP multicast. MDTP also has greater efficiency than XCAST, and its efficiency becomes significant for a large number of clients.
Yoshinori ROKUGO Kazushi TAHARA Joji MAEDA Susumu ITOH
When digital broadcasting services are provided through cable television (CATV) networks, viewers watching interactive programs such as quizzes or auctions may respond to the program within a short period. If these responses are transmitted in the upstream channel of the CATV networks using TCP/IP, they will result in burst traffic. The numerous TCP connections will trigger congestion in the upstream transmission facilities and will cause a significant delay in conventional Internet services such as web-browsing. The present paper proposes a new method of controlling the CATV upstream channel to avoid such congestion. We introduce class-based queues at each cable TV station, in which each service class is related to a type of interactive service. The status of the queue is relayed to the cable modems of subscribers using a CATV-specific MAC protocol. This queue-status information is used to suspend further initiation of TCP connections at cable modems. As a result, the TCP connections will be arbitrated in the CATV network, while the delay of the response transmission is traded for smoothing of the burst traffic. We numerically evaluate the effect of the proposed method using the time distribution of responses to an actual quiz program. The results show that the proposed method successfully suppresses interference of the burst traffic with conventional best-effort services.
Seungjun KIM Jongeun CHA Jongphil KIM Jeha RYU Seongeun EOM Nitaigour P. MAHALIK Byungha AHN
In this paper, we demonstrate an immersive and interactive broadcasting production system with a new haptically enhanced multimedia broadcasting chain. The system adapts Augmented Reality (AR) techniques, which merges captured videos and virtual 3D media seamlessly through multimedia streaming technology, and haptic interaction technology in near real-time. In this system, viewers at the haptic multimedia client can interact with AR broadcasting production transmitted via communication network. We demonstrate two test applications, which show that the addition of AR- and haptic-interaction to the conventional audio-visual contents can improve immersiveness and interactivity of viewers with rich contents service.