1-2hit |
Masanori HASHIMOTO Yoshiteru HAYASHI Hidetoshi ONODERA
This paper experimentally investigates the effectiveness of regularly-placed bit-slice layout and transistor-level optimization to datapath circuit performance. We focus on cell-base design flows with transistor-level circuit optimization. We examine the effectiveness through design experiments of 32-bit carry select adder and 16-bit tree-style multiplier in a 0.35 µm technology. From the experimental results, we can scarcely observe that manual cell placement contributes to improve circuit performance. On the other hand, transistor-level circuit optimization is so effective that circuit delay is reduced by 11-20% and power dissipation decreases to 42-62%. We can see that, in the case of cell-base design, transistor-level optimization is also important as well as in the case of custom design, whereas cell-base bit-slice layout has less importance to circuit performance.
Masanori HASHIMOTO Hidetoshi ONODERA
We propose a transistor sizing method that downsizes MOSFETs inside a cell to eliminate redundancy of cell-based circuits as much as possible. Our method reduces power dissipation of detail-routed circuits while preserving interconnects. The effectiveness of our method is experimentally evaluated using 3 circuits. The power dissipation is reduced by 75% maximum and 60% on average without delay increase. Compared with discrete cell sizing, the proposed method reduces power dissipation furthermore by 30% on average.