1-4hit |
Duk-Hyung LEE Daejeong KIM Ho-Jun SONG Kyeong-Sik MIN
A power-efficient Dickson-based charge pump circuit is proposed and verified in this paper. Using a PMOS transfer switch in the new circuit solves the problem of the output voltage loss and its body control switch can suppress the parasitic bipolar action. Comparing this new one with the conventional circuit, the new circuit generates output voltage as high as 2.9 VDD while the conventional one only 2 VDD. For their efficiency values, the new circuit has better efficiency than the conventional one by as much as 14.5% with the area overhead of 12.2% using 3.5-µm and 40-V CMOS high-voltage process.
In this paper a new MOS charge pump architecture is presented, where a clock generator is used in each pump stage of the charge pump circuit to elevate voltage exponentially with stages. This charge pump with a clock level shifter is designed to run at an optimized operation frequency, which can make an excellent compromise between the rise time and the dynamic power dissipation. With less stages than the linear-cascade circuit, the power dissipation and the area of the novel charge pump circuit are markedly decreased. The simulating comparison results based on 1.2 µm CMOS, p-substrate double-poly double-metal process parameters show that the nonlinear charge pump with a high pumping efficiency can supply a steady 1 mA, 16 v output for portable LCDs.
Manabu HIRATA Yasoji SUZUKI Masahiro YOSHIDA Yutaka ARAYASHIKI Mitsuo TERAMOTO Somsak CHOOMCHUAY
New positive and negative bias voltage generators for TFT-LCD's drivers utilizing charge pump circuits are introduced. The generators can generate positive or negative voltages with various amplitude by simply changing the number of pumping stages. By using the circuit simulation program HSPICE, it is demonstrated that the introduced generators can provide enough positive or negative voltages for TFT-LCD's drivers.
An on-chip high voltage generator applicable to low voltage flash memory is introduced. Bootstrapped gate transfer switches of two parallel paths suppress the voltage loss due to threshold voltage drop of transfer transistors. The simulated results demonstrate that proposed circuit designed with NMOS transistors having 0.8 volt threshold voltage works like an ideal charge pump circuit near 1.0 volt range with enough current driving capability.