The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] chemical shift(3hit)

1-3hit
  • Spectroscopic MR Imaging Using the Spread Spectrum Produced by Oscillating Gradient Fields

    Kunio TAKAYA  

     
    PAPER-Image

      Vol:
    E84-A No:3
      Page(s):
    875-883

    A chemical shift MR method which utilizes a oscillating gradient field is presented in this paper. Frequency modulation resulting from oscillating a gradient field spreads the spectrum that contains both chemical shift and spatial information, over a wide frequency range by using a large modulation factor in FM. The chemical shift spectrum resides within every frequency band segmented by the modulation frequency ωm. The spectral elements gathered from all such frequency segments for a chemical shift frequency contain the spatial image of that particular chemical shift frequency, despite the distortion introduced by a series of the Bessel functions acting as a point spread function. A sum of several Bessel functions of the first kind Jn(. ) is used to approximate the deconvolution process, since the sum staggered with respect to n has a desirable peaking property useful in deconvolution. This leads to devise a new image reconstruction algorithm based on the simple moving average over the spatial coordinate for which the oscillating gradient is applied. Furthermore, the number of echo measurements necessary for an image size of N N is reduced from N2 of the spin echo chemical shift imaging down to N by this method. Simulation results supporting the validity of this method are also presented in this paper.

  • Ultrafast Single-Shot Water and Fat Separated Imaging with Magnetic Field Inhomogeneities

    Shoichi KANAYAMA  Shigehide KUHARA  Kozo SATOH  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E77-D No:8
      Page(s):
    918-924

    Ultrafast MR imaging (e.g., echo-planar imaging) acquires all the data within only several tens of milliseconds. This method, however, is affected by static magnetic field inhomogeneities and chemical shift; therefore, a high degree of field homogeneity and water and fat signal separation are required. However, it is practically impossible to obtain an homogeneous field within a subject even if in vivo shimming has been performed. In this paper, we describe a new ultrafast MR imaging method called Ultrafast Single-shot water and fat Separated Imaging (USSI) and a correction method for field inhomogeneities and chemical shift. The magnetic field distribution whthin the subject is measured before thd scan and used to obtain images without field inhomogeneity distortions. Computer simulation results have shown that USSI and the correction method can obtain water and fat separated images as real and imaginary parts, respectively, of a complex Fourier transform with a single-shot scan. Image quality is maintained in the presence of field inhomogeneities of several ppm similar to those occurring under practical imaging conditions. Limitations of the correction method are also discussed.

  • Synchrotron Radiation Induced Direct Projection Patterning of Aluminum on Si and SiO2 Surfaces

    Fumihiko UESUGI  Iwao NISHIYAMA  

     
    PAPER-Opto-Electronics Technology for LSIs

      Vol:
    E76-C No:1
      Page(s):
    47-54

    A new direct projection patterning technique of aluminum using synchrotron radiation (SR) is proposed. It is based on the thermal reaction control effect of SR excitation. In the case of the Si surface, pure thermal growth is possible at 200, however, this growth is suppressed perfectly by SR irradiation. On the other hand, Al growth on the SiO2 surface is impossible at the same temperature thermally, however, SR has an effect to initiate thermal reaction. Both new effects of SR, suppression and initiation, are clarified to be caused by atomic order level thin layers formed from CVD gases by SR excitation on the surfaces. By using these effects, the direct inverse and normal projection patterning of Al are successfully demonstrated.