The search functionality is under construction.

Keyword Search Result

[Keyword] coded modulation(74hit)

1-20hit(74hit)

  • Precoded Physical Layer Network Coding with Coded Modulation in MIMO-OFDM Bi-Directional Wireless Relay Systems Open Access

    Satoshi DENNO  Kazuma YAMAMOTO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    99-108

    This paper proposes coded modulation for physical layer network coding in multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) bi-directional wireless relay systems where precoding is applied. The proposed coded modulation enables the relays to decode the received signals, which improves the transmission performance. Soft input decoding for the proposed coded modulation is proposed. Furthermore, we propose two precoder weight optimization techniques, called “per subcarrier weight optimization” and “total weight optimization”. This paper shows a precoder configuration based on the optimization with the lattice reduction or the sorted QR-decomposition. The performance of the proposed network coding is evaluated by computer simulation in a MIMO-OFDM two-hop wireless relay system with the 16 quadrature amplitude modulation (QAM) or the 256QAM. The proposed coded modulation attains a coding gain of about 2dB at the BER of 10-4. The total weight optimization achieves about 1dB better BER performance than the other at the BER of 10-4.

  • Bit Labeling and Code Searches for BICM-ID Using 16-DAPSK

    Chun-Lin LIN  Tzu-Hsiang LIN  Ruey-Yi WEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/05/31
      Vol:
    E101-B No:12
      Page(s):
    2380-2387

    Bit-interleaved coded modulation with iterative decoding (BICM-ID) is suitable for correlated Rayleigh fading channels. Additionally, BICM-ID using differential encoding can avoid the pilot overhead. In this paper, we consider BICM-ID using 16-DAPSK (differential amplitude and phase-shift keying). We first derive the probability of receiving signals conditioned on the transmission of input bits for general differential encoding; then we propose two new 16-DAPSK bit labeling methods. In addition, convolutional codes for the new bit labeling are developed. Both the minimum distance and the simulation results show that the proposed labeling has better error performance than that of the original differential encoding, and the searched new codes can further improve the error performance.

  • Pseudo Distance for Trellis Coded Modulation in Overloaded MIMO OFDM with Sphere Decoding

    Ilmiawan SHUBHI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:3
      Page(s):
    723-731

    Efficient detection schemes for an overloaded multiple-input multiple-output (MIMO) system have been investigated recently. The literature shows that trellis coded modulation (TCM) is able to enhance a system's capability to separate signal streams in the detection process of MIMO systems. However, the computational complexity remains high as a maximum likelihood detection (MLD) algorithm is used in the scheme. Thus, a sphere decoding (SD) algorithm with a pseudo distance (PD) is proposed in this paper. The PD maintains the coding gain advantage of the TCM by keeping some potential paths connected unlike conventional SD which truncates them. It is shown that the proposed scheme can reduce the number of distance calculations by about 98% for the transmission of 3 signal streams. In addition, the proposed scheme improves the performance by about 2dB at the bit error rate of 10-2.

  • Iterative Detection and Decoding of MIMO Signals Using Low-Complexity Soft-In/Soft-Out Detector

    Seokhyun YOON  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:5
      Page(s):
    890-896

    In this paper, we investigate iterative detection and decoding, a.k.a. turbo detection, for multiple-input multiple-output (MIMO) transmission. Specifically, we consider using a low complexity soft-in/soft-out MIMO detector based on belief propagation over a pair-wise graph that accepts a priori information feedback from a channel decoder. Simulation results confirm that considerable performance improvement can be obtained with only a few detection-and-decoding iterations if convolutional channel coding is used. A brief estimate is given of the overall complexity of turbo detectors, to verify the key argument that the performance of a maximum a posteriori (MAP) detector (without turbo iteration) can be achieved, at much lower computation cost, by using the low complexity soft-in/soft-out MIMO detector under consideration.

  • Quasi-Linear Trellis-Coded QAM Using a Matched Mapping

    Tatsumi KONISHI  

     
    LETTER-Coding Theory

      Vol:
    E98-A No:4
      Page(s):
    1049-1053

    We propose a quasi-linear trellis-coded modulation (TCM) using nonbinary convolutional codes for quadrature amplitude modulation (QAM). First, we study a matched mapping which is able to reduce the computational complexity of the Euclidean distances between signal points of MQAM. As an example, we search for rate R=1/2 convolutional codes for coded 64QAM by this method. The symbol error rates of the proposed codes are estimated by the distance properties theoretically and they are verified by simulation. In addition, we compare the minimum free Euclidean distances of these new codes with their upper bounds. Finally, the bit error probabilitiy of the proposed coded modulation is compared with uncoded signal constellations and a conventional TCM code proposed by Ungerboeck. The result shows the proposed scheme outperform them on the AWGN channels.

  • Iterative Channel Estimation and Decoding via Spatial Coupling

    Shuhei HORIO  Keigo TAKEUCHI  Tsutomu KAWABATA  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    549-557

    For low-density parity-check codes, spatial coupling was proved to boost the performance of iterative decoding up to the optimal performance. As an application of spatial coupling, in this paper, bit-interleaved coded modulation (BICM) with spatially coupled (SC) interleaving — called SC-BICM — is considered to improve the performance of iterative channel estimation and decoding for block-fading channels. In the iterative receiver, feedback from the soft-in soft-out decoder is utilized to refine the initial channel estimates in linear minimum mean-squared error (LMMSE) channel estimation. Density evolution in the infinite-code-length limit implies that the SC-BICM allows the receiver to attain accurate channel estimates even when the pilot overhead for training is negligibly small. Furthermore, numerical simulations show that the SC-BICM can provide a steeper reduction in bit error rate than conventional BICM, as well as a significant improvement in the so-called waterfall performance for high rate systems.

  • Reduced-Complexity Constellation Mapping and Decoding in Wireless Multi-Way Relaying Networks

    Ning WANG  Zhiguo DING  Xuchu DAI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:4
      Page(s):
    702-711

    In this paper, we focus on the multi-way relaying channel where K users wish to exchange information with each other within two phases. Precoding at each user and the relay is carefully constructed to ensure that the signals from the same user pair are grouped together and cross-pair interference can be cancelled. Reliable detection is challenging at the relay since the observation constellation is no longer one of the regular ones, due to the fact that a relay observation is the superposition of the messages from one of the $ rac{1}{2}K(K-1)$ user pairs. When the trellis coded modulation is used at each node, a simple constellation mapping function and a reduced-states decoding scheme can be applied at the relay, which result in much lower complexity. Furthermore, a modified version of the decoding method is also developed which is called the re-encoding-avoidance scheme at the relay. Monte-Carlo simulation results are provided to demonstrate the performance of the proposed scheme.

  • A Chaos MIMO Transmission Scheme for Channel Coding and Physical-Layer Security

    Eiji OKAMOTO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1384-1392

    In recent wireless communication systems, security is ensured mainly in the upper-layer techniques such as a password or a cryptography processing. However, security needs not be restricted to the upper-layer and the addition of physical-layer security also would yield a much more robust system. Therefore, in this paper, we exploit chaos communication and propose a chaos multiple-input multiple-output (MIMO) transmission scheme which achieves physical-layer security and additional channel-coding gain. A chaotic modulation symbol is multiplied to the data to be transmitted at each MIMO antenna to exploit the MIMO antenna diversity, and at the receiver, the joint MIMO detection and chaos decoding is done by maximum likelihood decoding (MLD). The conventional chaos modulation suffers from bit error rate (BER) performance degradation, while the coding gain is obtained in the proposed scheme by the chaos modulation in MIMO. We evaluate the performances of the proposed scheme by an analysis and computer simulations.

  • Soft Decoding of Integer Codes and Their Application to Coded Modulation

    Hristo KOSTADINOV  Hiroyoshi MORITA  Noboru IIJIMA  A. J. HAN VINCK  Nikolai MANEV  

     
    PAPER-Information Theory

      Vol:
    E93-A No:7
      Page(s):
    1363-1370

    Integer codes are very flexible and can be applied in different modulation schemes. A soft decoding algorithm for integer codes will be introduced. Comparison of symbol error probability (SEP) versus signal-to-noise ratio (SNR) between soft and hard decoding using integer coded modulation shows us that we can obtain at least 2 dB coding gain. Also, we shall compare our results with trellis coded modulation (TCM) because of their similar decoding schemes and complexity.

  • A Novel Turbo Coded Modulation Scheme for Deep Space Optical Communications

    Sangmok OH  Inho HWANG  Adrish BANERJEE  Jeong Woo LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:5
      Page(s):
    1260-1263

    A novel turbo coded modulation scheme, called the turbo-APPM, for deep space optical communications is proposed. The proposed turbo-APPM is a serial concatenation of turbo codes, an accumulator and a pulse position modulation (PPM), where turbo codes act as an outer code while the accumulator and the PPM act together as an inner code. The generator polynomial and the puncturing rule for generating turbo codes are chosen to lower the bit error rate. At the receiver, the joint iterative decoding is performed between the inner decoder and the outer turbo decoder. In the outer decoder, local iterative decoding for turbo codes is conducted. Simulation results are presented showing that the proposed turbo-APPM outperforms all previously proposed schemes such as LDPC-APPM, RS-PPM and SCPPM reported in the literature.

  • Performance of Adaptive Trellis Coded Modulation Applied to MC-CDMA with Bi-orthogonal Keying

    Hirokazu TANAKA  Shoichiro YAMASAKI  Miki HASEYAMA  

     
    PAPER-Communication Theory and Systems

      Vol:
    E92-A No:11
      Page(s):
    2837-2843

    A Generalized Symbol-rate-increased (GSRI) Pragmatic Adaptive Trellis Coded Modulation (ATCM) is applied to a Multi-carrier CDMA (MC-CDMA) system with bi-orthogonal keying is analyzed. The MC-CDMA considered in this paper is that the input sequence of a bi-orthogonal modulator has code selection bit sequence and sign bit sequence. In, an efficient error correction code using Reed-Solomon (RS) code for the code selection bit sequence has been proposed. However, since BPSK is employed for the sign bit modulation, no error correction code is applied to it. In order to realize a high speed wireless system, a multi-level modulation scheme (e.g. MPSK, MQAM, etc.) is desired. In this paper, we investigate the performance of the MC-CDMA with bi-orthogonal keying employing GSRI ATCM. GSRI TC-MPSK can arbitrarily set the bandwidth expansion ratio keeping higher coding gain than the conventional pragmatic TCM scheme. By changing the modulation scheme and the bandwidth expansion ratio (coding rate), this scheme can optimize the performance according to the channel conditions. The performance evaluations by simulations on an AWGN channel and multi-path fading channels are presented. It is shown that the proposed scheme has remarkable throughput performance than that of the conventional scheme.

  • An Improved Design of Block-Coded Modulation for the Rayleigh Fading Channel

    Shang-Chih MA  

     
    LETTER-Coding Theory

      Vol:
    E92-A No:9
      Page(s):
    2385-2387

    In this letter, we propose an improved block-coded modulation scheme for the Rayleigh fading channel. The proposed coding structure is constructed by providing interblock coding between adjacent blocks. The error performance of an example is simulated. The simulation results show that the proposed method can achieve large coding gain with reasonable decoding complexity.

  • Performance Bound for Finite-Length LDPC Coded Modulation

    Huy G. VU  Ha H. NGUYEN  David E. DODDS  

     
    LETTER-Communication Theory and Signals

      Vol:
    E90-A No:12
      Page(s):
    2975-2978

    Coded modulation systems based on low density parity check (LDPC) codes of finite lengths are considered. The union bounds on the bit error probabilities of the maximum likelihood (ML) decoding are presented for both additive white Gaussian noise (AWGN) and flat Rayleigh fading channels. The tightness of the derived bound is verified by simulating the ML decoding of a very short LDPC code. For medium-length codes, performance of the sum-product decoding can asymptotically approach the bounds.

  • A New Iterative Decodable Block Coded Modulation Scheme

    Shang-Chih MA  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E90-B No:5
      Page(s):
    1222-1224

    A new block coded modulation scheme with inter-level memory is proposed. The proposed code construction is based on the use of single parity check codes to concatenate a set of coded blocks. Simulation results show that the proposed scheme can achieve considerable coding gains while the decoding complexity is not too large.

  • MLP/BP-Based Soft Decision Feedback Equalization with Bit-Interleaved TCM for Wireless Applications

    Terng-Ren HSU  Chien-Ching LIN  Terng-Yin HSU  Chen-Yi LEE  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E90-A No:4
      Page(s):
    879-884

    For more efficient data transmissions, a new MLP/BP-based channel equalizer is proposed to compensate for multi-path fading in wireless applications. In this work, for better system performance, we apply the soft output and the soft feedback structure as well as the soft decision channel decoding. Moreover, to improve packet error rate (PER) and bit error rate (BER), we search for the optimal scaling factor of the transfer function in the output layer of the MLP/BP neural networks and add small random disturbances to the training data. As compared with the conventional MLP/BP-based DFEs and the soft output MLP/BP-based DFEs, the proposed MLP/BP-based soft DFEs under multi-path fading channels can improve over 3-0.6 dB at PER=10-1 and over 3.3-0.8 dB at BER=10-3.

  • Multi-Dimensional Mappings of M-ary Constellations for BICM-ID Systems

    Nghi H. TRAN  Ha H. NGUYEN  

     
    LETTER-Coding Theory

      Vol:
    E89-A No:7
      Page(s):
    2088-2091

    This paper studies bit-interleaved coded modulation with iterative decoding (BICM-ID) systems that employ multi-dimensional mappings of M-ary constellations to improve the error performance over Rayleigh fading channels. Based on the analytical evaluations of the asymptotic bit error probability (BEP), the distance criteria for the mapping designs can be obtained. A binary switching algorithm (BSA) is then applied to find the optimal mappings with respect to the asymptotic performance. Simulation and analytical results show that the use of multi-dimensional mappings of M-ary constellations can significantly improve the error performance.

  • Analysis of Bit Error Probability of Trellis Coded 8-PSK

    Hideki YOSHIKAWA  

     
    LETTER-Communication Theory

      Vol:
    E88-A No:10
      Page(s):
    2956-2959

    The letter presents an analysis of bit error probability for trellis coded 8-ary phase shift keying moduation with 2-state soft decision Viterbi decoding. It is shown that exact numerical error performance can be obtained for low singal-to-noise power ratio where bounds are useless.

  • Rate-Compatible Punctured Bit-Interleaved Coded Modulation for Mobile Satellite Communications

    Tadashi MINOWA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2082-2089

    Fading in mobile satellite communications severely degrades the performance of data transmission. It is commonly modeled with non-frequency selective Rayleigh fading. For this type of channel, a new structure for a bit-interleaved coded modulation (BICM) scheme is presented and evaluated to determine its effectiveness compared to previously proposed schemes. This scheme is referred to as rate-compatible punctured BICM (RCP-BICM), in that its BICM encoder is able to yield a wide range of data rates by using a punctured convolutional code obtained by periodically perforating parity bits from the output of a low-rate-1/2 systematic convolutional code. A trellis-coded modulation (TCM) scheme and a turbo TCM (TTCM) scheme are discussed and evaluated for comparison with the RCP-BICM scheme. Simulation results demonstrate that the RCP-BICM scheme with hard-decision iterative decoding is superior to the TCM scheme by 3 dB at a bit error rate (BER) of 10-5 over an Rayleigh fading channel, and comes at a BER of 10-5 within 1 dB of the TCM scheme over an additive white Gaussian noise (AWGN) channel.

  • A Prototype Modem with the Capability of Unequal Error Protection Developed for ETS-VIII Experiments

    Huan-Bang LI  Mitsugu OHKAWA  Nobufumi SARUWATARI  Noriyuki KARIYA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2090-2098

    A prototype modem with unequal error protection (UEP) capability was developed using multiple block coded modulation (MBCM). Benefited from its unique structure, MBCM can be used to provide UEP straightforward. We propose a new method to increase the robustness of the carrier recovery process by taking advantage of the MBCM code structure. We also use a frame format to facilitate the synchronization operation. This modem was developed in preparation for the mobile satellite communication experiments using the Engineering Test Satellite of VIII-type (ETS-VIII). In addition of MBCM, some other types of modulation schemes have been implemented in the same modem to enable a range of communication experiments to be performed. The modem can operate at variable data rates. The results of laboratory measurements agreed well with computer simulation results. Typical link budgets based on the parameters of ETS-VIII are also presented.

  • Performance of Pragmatic Trellis Coded ARQ with Cyclical Multicopy Retransmission for High Speed Mobile Satellite Communication System

    Hirokazu TANAKA  Shoichiro YAMASAKI  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2099-2110

    A Generalized Symbol-rate-increased (GSRI) Pragmatic Trellis coded Type-I Hybrid ARQ based on a Selective-Repeat (SR) ARQ with multicopy (MC) retransmission (SR+MC scheme) for high speed mobile satellite communication system is analyzed. The SR+MC ARQ is a suitable scheme for mobile satellite systems and further improvement of the throughput performance can be expected by an additional combination of an error control coding. In this paper, we investigate the performance of the SR+MC scheme employing GSRI Pragmatic TCM. GSRI TC-MPSK can arbitrarily set the bandwidth expansion ratio keeping higher coding gain than conventional TCM scheme. Also Pragmatic TCM has an advantage in that the modulation level can be easily changeable. By changing the modulation level and the bandwidth expansion ratio, this scheme can optimize the performance according to the channel conditions. Numerical and simulation results show that the GSRI Trellis Coded Type-I Hybrid ARQ presents better performance than conventional Pragmatic Trellis Coded Type-I Hybrid ARQ.

1-20hit(74hit)