The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] combining(156hit)

141-156hit(156hit)

  • Performance of Diversity Combining Scheme Using Simplified Weighting Factor

    Hiroyasu SANO  Makoto MIYAKE  Tadashi FUJINO  

     
    PAPER

      Vol:
    E80-B No:8
      Page(s):
    1160-1166

    Maximal-ratio combining (MRC), which maximizes the carrier to noise ratio (CNR) of the combined signal, generally requires envelope detection and multiplication having linear characteristic over a wide dynamic range to generate a weighting factor for each branch. In this paper, we propose a simplified two-branch diversity combining scheme without linear envelope detection. The proposed scheme, called "level comparison weighted combining (LCWC),"is simplified in a manner that its weighting factor for each branch is generated from hard-decision results of comparing signal envelopes between two branches. Performance of LCWC is evaluated by computer simulation and laboratory experiment, which shows that its diversity gain is almost identical to that of MRC in a Rayleigh fading channel.

  • High Efficient Spatial Power Combining Utilizing Active Integrated Antenna Technique

    Shigeo KAWASAKI  

     
    PAPER

      Vol:
    E80-C No:6
      Page(s):
    800-805

    This paper describes a concept of the quasioptical spatial power combining technique and its demonstration of active integrated antenna arrays with strong coupling as an actual example of high efficient combiner in high frequencies. Some configurations of the arrays such as a 3-element linear array and a 33 array are designed with a circuit and electromagnetic simulator. In order to predict the operating frequencies, large signal FET model parameters are determined from measured small signal S-parameters.

  • Implementation of a Digital Signal Processor in a DBF Self-Beam-Steering Array Antenna

    Toyohisa TANAKA  Ryu MIURA  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:1
      Page(s):
    166-175

    We have proposed a digital beamforming (DBF) self-beam-steering array antenna which features maximal ratio combining enabling it to efficiently use the received power or to rapidly track the desired signal. The DBF self-beam-steering array antenna utilizes digital signal processing with an active array antenna configuration. ASIC implementation of the digital signal processor is inevitable for DBF antenna application in practical mobile communications environments. In this paper, we present a scheme for implementing a digital signal processor in ASICs using ten FPGAs (Field Programmable Gate Arrays) for the DBF self-beam-steering array antenna. Results of some experiments obtained in a large radio anechoic chamber are shown to confirm a basic function of the system.

  • 70 GHz Band Positioning System for Unmanned Vehicles

    Hironobu OKAMOTO  Tetsujirou IZUMI  Hiroo KISHI  

     
    PAPER

      Vol:
    E79-B No:12
      Page(s):
    1813-1817

    In outdoor fields such as construction, mining and agriculture, there is an increasing demand for autonomous vehicles to reduce labor costs. Also, a positioning system is one key technology required for autonomous vehicle systems. For the purpose of expanding the potential of millimeter-wave applications, we have developed a positioning system in the 77-79 GHz frequency band, using the hyperbolic radio navigation method. This system operates in a restricted area with a radius of about a few hundred meters. A spread spectrum with a PN code is used as the ranging signals. We realized about 0.1 m in positioning accuracy.

  • A Power-Combining system of Four Oscillators Using an Eight-Port Hybrid

    Isao OHTA  Tadashi KAWAI  Yoshihiro KOKUBO  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E79-C No:10
      Page(s):
    1449-1454

    This paper treats a new-type power combining system of four oscillators equally coupled to one another through an eight-port hybrid. This system is marked by easy analyzability and adjustability from its symmetrical construction. In addition, a combined power from the four oscillators is distinguishably delivered to an arbitrary port of four output ports, and hence can be switched in four ways. Experimental corroboration is presented also.

  • A Unified Method of Mutual Exclusion in Parallel and Distributed Systems

    Masaru TAKESUE  

     
    PAPER-Computer Systems

      Vol:
    E79-D No:4
      Page(s):
    306-311

    This paper proposes a mutual exclusion method that is unified for the parallel and distributed systems. The method partially serializes requests into partial queues of requests, which are next totally serialized into a main queue. A request in the main queue is authorized to enter the critical section (CS) when the request receives the privilege token from the previous request in the queue. In the distributed system of N sites that each is a parallel system, mutual exclusion is performed by cooperation of two algorithms based on the same method. The algorithm for the distributed system works on a logical network (that is a directed tree) of S ( N) sites. The algorithm for each site produces a local-main queue of requests. The chunk of requests in the local queue is concatenated at a time to the partial queue of the distributed system. The the cost of mutual exclusion -- the number of intersite messages required per CS entry -- is reduced to O(1) (between 0 and 3).

  • Fabry-Perot Multiple-Device Oscillator Using an Axially Symmetric Mode

    Minoru SANAGI  Shigeji NOGI  Kiyoshi FUKUI  Kazuyuki WATANABE  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    949-956

    We propose an axially symmetrical Fabry-Perot multiple-device oscillator operating at an axially symmetrical TEM01n-mode, which has an excellent feature of uniform device-field coupling required for high efficiency power combining. By carrying out the boundary element analysis, it is shown that a plane-mirror output structure is remarkably advantageous compared with a concave-mirror output structure to obtain an adequate output coupling and to enable stable operation characteristic with respect to the axial mode number n. Experiments in X-band confirmed this excellent performance and achieved almost perfect power combining of efficiency as high as 106% and 99% for six- and eight-device case, respectively.

  • The Performance of the New Convolutional Coded ARQ Scheme for Moderately Time-Varying Channels

    Hiroyuki FUJIWARA  Hirosuke YAMAMOTO  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E78-A No:3
      Page(s):
    403-411

    The performance of the hybrid-ARQ scheme with a convolutional code, in which the retransmission criterion is based on an estimated decoding error rate, is evaluated for moderately time-varying channels. It is shown by computer simulations that the simple average diversity combining scheme can almost attain the same performance as the optimally weighted diversity combining scheme. For the whole and partial retransmission schemes with the average diversity combining, the theoretical bounds of throughput and bit error rate are derived, and it is shown that their bounds are tight and the treated schemes can attain a given error rate with good throughput for moderately time-varying channels. Furthermore, the throughput is shown to be improved by the partial retransmission scheme compared with the whole retransmission scheme.

  • A Convolutional Coded ARQ Scheme with Retransmission Criterion Based on an Estimated Decoding Error Rate

    Hiroyuki FUJIWARA  Hirosuke YAMAMOTO  Jinqiao REN  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E78-A No:1
      Page(s):
    100-110

    A new Hybrid-ARQ scheme with a convolutional code and the Viterbi decoding is proposed, which uses the packet combining technique and a retransmission criterion based on an estimated decoding error rate. The throughput and bit error rate are evaluated by theoretical bounds and computer simulations. It is shown that a given error rate tolerance can be attained with good throughput for any signal to noise ratio, i.e. for the slow time-varying channels. Furthermore, the throughput performance can be improved by retransmitting not all but a part of packet.

  • Coherent Hybrid DS-FFH CDMA with Adaptive Interference Cancelling for Cellular Mobile Communications

    Shigeru TOMISATO  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER

      Vol:
    E77-B No:5
      Page(s):
    589-597

    This paper proposes Coherent-HYBrid Direct-Sequence Fast-Frequency-Hopping (CHYB-DS-FFH) CDMA with Adaptive Interference Cancelling (AIC) for cellular mobile communications. The features of CHYB-DS-FFH are symbol-by-symbol frequency diversity and low chip-rate DS multiplexing both of which are based on a coherent FFH modulation and demodulation scheme. The combination of coherent FFH, space diversity, and AIC is very effective for reducing the performance degradation due to interference. Computer simulations demonstrate BER performance of a 2 hop 500-kHz-interval frequency hopping system using () a linear canceller or () a nonlinear canceller. Both systems employ the two branch space diversity reception of 10kb/s QPSK with FFH over a 1MHz system bandwidth. In quasi-static channels, the average BER performance is 10-2 with average Eb/N0 less than 8dB. In dynamic fading channels under full interference conditions, CHYB-DS-FFH with the linear adaptive interference canceller realizes a BER of 10-2 at the average Eb/N0 of 15dB with maximum Doppler frequency fD of 5Hz, whereas CHYB-DS-FFH with the non-linear adaptive interference canceller achieves the same BER at the average Eb/N0 of 15dB with fD, equal to 30Hz.

  • Analysis of a Distributed Antenna System and Its Performance under Frequency Selective Fading

    Kiyohito TOKUDA  Shinichi SATO  Yuichi SHIRAKI  Atsushi FUKASAWA  

     
    PAPER

      Vol:
    E77-B No:5
      Page(s):
    606-623

    This paper describes the performance analysis of a distributed antenna system which includes space and path diversity with radio channel estimation. This system is used for CDMA personal communication systems. In this paper, the performance of a diversity system is analyzed precisely considering multipath and inter-antenna interference. In a diversity system, the adaptive RAKE receiver which estimates the characteristics of a radio channel adaptively has been used for diversity combining. In the adaptive RAKE, the time-variant characteristic has been approximated by a time function. In this paper, the estimation performance of the adaptive RAKE is analyzed in cases of time functions of 0-th, first and second degrees. The performances are evaluated and compared with the differential RAKE. The adaptive RAKE is found to improve the signal quality of more than 2dB in comparison with the differential RAKE. It is also found that the optimum parameter design can be achieved flexibly for radio channel estimation by using higher degree time functions.

  • Performance Bounds for MLSE Equalization and Decoding with Repeat Request for Fading Dispersive Channels

    Hiroshi NOGAMI  Gordon L. STÜBER  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E77-A No:3
      Page(s):
    553-562

    Upper bounds on the bit error probability and repeat request probability, and lower bounds on the throughput are derived for a Hybrid-ARQ scheme that employs trellis-coded modulation on a fading dispersive channel. The receiver employs a modified Viterbi algorithm to perform joint maximum likelihood sequence estimation (MLSE) equalization and decoding. Retransmissions are generated by using the approach suggested by Yamamoto and Itoh. The analytical bounds are extended to trellis-coded modulation on fading dispersive channels with code combining. Comparison of the analytical bounds with simulation results shows that the analytical bounds are quite loose when diversity reception is not employed. However, no other analytical bounds exist in the literature for the trellis-coded Hybrid ARQ system studied in this paper. Therefore, the results presented in this paper can provide the basis for comparison with more sophisticated analytical bounds that may be derived in the future.

  • Cascaded Co-Channel Interference Cancelling and Diversity Combining for Spread-Spectrum Multi-Access over Multipath Fading Channels

    Young C. YOON  Ryuji KOHNO  Hideki IMAI  

     
    LETTER

      Vol:
    E76-B No:2
      Page(s):
    163-168

    We propose a direct-sequence spread-spectrum multi-access (DS/SSMA) receiver that incorporates multipath diversity combining and multistage co-channel interference (CCI) cancellation. This receiver structure which is more resistant to the near/far problem essentially removes more and more of the CCI with each successive cancellation stage. With the assumption that perfect channel estimates have been obtained, we analyze the bit error rate (BER) performance of this system when received powers are unequal. Results show that the BER can approach that of a single-user case as the number of CCI cancellation stages increases.

  • Adaptive Equalization with Dual Diversity-Combining

    Kouei MISAIZU  Takashi MATSUOKA  Hiroshi OHNISHI  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E76-B No:2
      Page(s):
    131-138

    This paper proposes and investigates an adaptive equalizer with diversity-combining over a multipath fading channel. It consists of two space-diversity antennas and a Ts/2-spaced decision-feedback-equalizer (DFE). Received signals from the two antennas are alternatively switched and fed into the feed forward-filter of DFE. We call this structure a Switched Input Combining Equalizer with diversity-combining (SICE). By using an SICE, the receiver structure for combining diversity equalization can be simplified, because it needs only two receiver sections up to IF BPF. The bit error rate (BER) performance of SICE was evaluated by both computer simulation and experiment over a multipath fading channel. We experimentally confirmed the excellent BER performance, around 1% of BER over a multipath fading channel at 160Hz of maximum doppler fading frequency. Therefore, the proposed SICE is applicable to highly reliable transmission in the 1.5-GHz-band mobile radio.

  • Intermediate-Frequency-Combining Polarization Diversity Using Frequency Conversion

    Hideaki TSUSHIMA  Shinya SASAKI  Shigeki KITAJIMA  Katsuhiko KUBOKI  

     
    PAPER

      Vol:
    E75-B No:6
      Page(s):
    506-513

    An intermediate-frequency-combining (IF-combining) polarization diversity using frequency conversion is proposed. The proposed diversity requires no phase controller as opposed to the conventional IF-combining diversity. It has been theoretically clarified that this diversity has polarization insensitive bit-error-rate (BER) characteristics. The effectiveness has been confirmed by experiments in which the sensitivity dependence on the polarization is suppressed to within 0.8dB and a stable 101km fiber transmission at 600Mbit/s is achieved.

  • A Batcher-Double-Omega Network with Combining

    Kalidou GAYE  Hideharu AMANO  

     
    PAPER-Computer Networks

      Vol:
    E75-D No:3
      Page(s):
    307-314

    The Batcher banyan network is well known as a non-blocking switching fabric. However, it is conflict free only when there is no packets for the same destination. To cope with the arbitrary combination of packets, an additional network or special control sequence which causes the increase of the hardware or performance degradation is required. A Batcher Double Omega network with Combining (BDOC) is an elegant solution of this problem. It consists of a Batcher sorter and two double sized Omega networks. Like in the Batcher banyan network, packets are sorted by the destination label in the Batcher sorter. In the first Omega network called the distributer, a packet is routed by a tag corresponding to the sum of the label at the output of the Batcher sorter and the destination label. In the second (Inverse) Omega network called the concentrator, the original destination label is used as the routing tag, and packets are routed without any conflict. The BDOC is useful for an interconnection network to connect processors and memory modules in multiprocessor. Unlike conventional multistage interconnection networks for multiprocessors, packets are transferred in a serial and synchronized manner. The simple structure of the switching element enables a high speed operation which reduces the latency caused by the serial communication. Using the pipelined circuit switching, the address and data packets share the same control signal, and the structure of the switching element is much simplified. Moreover, packets combining which avoids the hot spot contention is realized easily in the concentrator.

141-156hit(156hit)