The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] combining(156hit)

101-120hit(156hit)

  • A Weighted Delay Transmit Diversity System Combined with Antenna Diversity Reception for DS-CDMA Mobile Radio

    Akihito KATO  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:7
      Page(s):
    2211-2215

    In this paper, we study a delay transmit diversity system combined with antenna diversity reception that transmits the time-delayed and weighted versions of the same signal from multiple antennas. At a receiver, multiple receive antennas are used and all delayed signals received on multiple antennas are coherently combined by a Rake receiver. The set of optimum antenna weights for maximizing the received signal-to-noise power ratio (SNR) after Rake combining is theoretically analyzed to show that the optimum solution is to transmit only from the best antenna that has the maximum equivalent channel gain seen after Rake combining. The bit error rate (BER) performance is theoretically analyzed and evaluated by computer simulation. The combined effect of transmit diversity and transmit power control (TPC) is also investigated.

  • A Subcarrier Selection Combining Technique for OFDM Systems

    Hyeok Koo JUNG  Won Gi JEON  Kyeung Hak SEO  Yong Soo CHO  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:7
      Page(s):
    2119-2124

    In this paper, a simple subcarrier selection combining technique is proposed for orthogonal frequency-division multiplexing (OFDM) systems with multiple receive antennas. The subcarrier-based selection algorithm is developed in the frequency domain to achieve an optimal selection combining gain for OFDM systems, instead of the antenna-based selection algorithms in the time domain or frequency domain. The proposed technique selects an optimal subcarrier with a maximum channel gain among all the receive antennas with the same subcarrier position, based on the estimated channel frequency response during the training period. Hardware complexity for the proposed technique is minimal since it requires single front-end with multiple receive antennas and single baseband demodulator. It is shown by computer simulation that a significant gain can be achieved by the proposed technique over the conventional selection combining technique for OFDM systems in practical situations.

  • Performance Comparison of FH-MFSK System with Various Diversity Combining Schemes under Worst Case Partial Band Jamming

    Sungdon MOON  Yeomin YOON  Jeungmin JOO  Kwangeog LEE  Kiseon KIM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1443-1447

    In fast frequency hopped (FFH) non-coherent MFSK systems, the diversity combining scheme can be used effectively in order to combat the interference, especially jamming noise. In this paper, we simulate and discuss the BER performance of FH/MFSK system for different diversity combining schemes, such as linear combining, clipped-linear combining, normalized envelop detection (NED), order statistics (OS) NED and product combining receiver (PCR), in the presence of both the worst case partial band jamming (PBJ) and the fading channel. The performances of those combining schemes except for linear combining are similar each other in the worst case PBJ without the fading. In the existence of both the worst case PBJ and the fading channel, the clipped-linear combining scheme suffers a larger drop in performance than other combining schemes. It is noteworthy that the performances of OSNED and PCR are the best in Rayleigh fading channel among those combining schemes.

  • Modified Gardner's Timing-Error Estimation Algorithm for Space-Time Block Coding Schemes

    Dae-Ki HONG  Seong-Soon JEONG  Sang-Cheol HAN  Daesik HONG  Chang-Eon KANG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1453-1456

    In this paper, a modified Gardner's timing-error estimation algorithm is proposed for space-time block coding (STBC) schemes. In STBC schemes, the symbol timing-error can be estimated for each received antenna. The proposed algorithm is the diversity combining of all symbol timing-error estimates using Gardner's algorithm with the assumptions of identical channel delay of each SISO sub-stream. Simulation results show the proposed algorithm improves the symbol timing-error estimation performance through diversity gains. Estimation of symbol timing-error in multiple-input and multiple-output (MIMO) antenna systems is an another suitable area of application.

  • Comparative Study of Various Frequency Equalization Techniques for Downlink of a Wireless OFDM-CDMA System

    Tomoki SAO  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    352-364

    In a wireless OFDM-CDMA system, the data-modulated symbol of each user is spread over multiple subcarriers in the frequency domain using a given spreading code. For the downlink (base-to-mobile) transmissions, a set of orthogonal spreading codes defined in the frequency domain is used so that different users data can be transmitted using the same set of subcarriers. The frequency selectivity of the radio channel produces the orthogonality destruction. There are several frequency equalization combining techniques to restore orthogonality, i.e., orthogonal restoration combining (ORC), control equalization combining (CEC) that is a variant of ORC, threshold detection combining (TDC), and minimum mean square error combining (MMSEC). The ORC can restore orthogonality among users but produces noise enhancement. However, CEC, TDC, and MMSEC can balance the orthogonality restoration and the noise enhancement. In this paper, we investigate, by means of computer simulation, how the BER performances achievable with ORC, CEC, TDC, and MMSEC are impacted by the propagation parameters (path time delay difference and fading maximum Doppler frequency), number of users, pilot power used for channel estimation, and channel estimation scheme. To acquire a good understanding of ORC, CEC, TDC, and MMSEC, how they differ with respect to the combining weights is discussed. Also, the downlink transmission performances of DS-CDMA and OFDM-CDMA are compared when the same transmission bandwidth is used. How much better performance is achieved with OFDM-CDMA than with DS-CDMA using ideal rake combining is discussed.

  • Linear Predictive Maximal Ratio Combining Transmitter Diversity for OFDM-TDMA/TDD Systems

    Fumiaki MAEHARA  Fumihito SASAMORI  Fumio TAKAHATA  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    221-229

    This paper proposes a 2-dimensional linear propagation prediction (LPP) in maximal ratio combining (MRC) transmitter diversity for orthogonal frequency division multiplexing (OFDM) time division multiple access--time division duplex (TDMA/TDD) systems in order to overcome the degradation of the transmission performance due to the fast fading or the TDD duration. In the proposed scheme, the downlink channel condition of each sub-channel is predicted by interpolating the uplink fading fluctuation with both the amplitude and phase, and the predicted downlink channel condition is used for the weighting factor to employ MRC transmitter diversity. Numerical results obtained by the computer simulation show that the proposed 2-dimensional LPP with the second-order Lagrangeis interpolation predicts the downlink channel condition accurately under the fast fading or the long TDD duration. Moreover, in such a condition, the proposed LPP provides far better performance than the conventional 1-dimensional LPP.

  • Experimental Results of Diversity Reception for Terrestrial Digital Broadcasting

    Junji IMAI  Mitoshi FUJIMOTO  Tsutayuki SHIBATA  Noriyoshi SUZUKI  Nobuo ITOH  Kansei MIZUTANI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:11
      Page(s):
    2527-2530

    The reception quality of terrestrial digital broadcasting when the directional pattern of a mobile terminal is controlled has been experimentally evaluated using test signal. It was found that the reception probabilities with a controlled directional pattern were significantly improved over the case when an omni-directional antenna was used.

  • Performance Investigation of Two Transmit Diversity Schemes with Perfect/Imperfect Channel Evaluation in Wireless Communications

    Jie ZHOU  Hisakazu KIKUCHI  Shigenobu SASAKI  Shogo MURAMATSU  Yoshikuni ONOZATO  

     
    PAPER

      Vol:
    E85-B No:10
      Page(s):
    1957-1965

    Transmit diversity, a key technique derived against multi-path mitigation in wireless communication system, is examined and discussed. Especially, we present an approach to investigate perfect/imperfect channel detection when the maximal ratio receiver combined scheme (MRRC) and a simple transmit diversity scheme (STD) are used in the wireless systems, which provide remarkable schemes for diversity transmission over Rayleigh-fading channels using multiple antennas. In order to effectively make use of the transmit diversity techniques, the same approach is extended to process the situation of one transmit antennas and N receive antennas in MRRC scheme (1 N MRRC) and two transmit antennas and N receive antennas in STD scheme (2 N STD). The effects of perfect/imperfect channel detection and the diversity reception with independent and correlated Rayleigh-fading signals are evaluated and compared carefully.

  • Multiuser Interference Suppression in Uplink Multicarrier CDMA Systems

    Chihiro FUJITA  Yoshitaka HARA  Yukiyoshi KAMIO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E85-A No:10
      Page(s):
    2256-2262

    We investigated the suppression of multiuser interference in uplink multicarrier CDMA systems using the minimum mean squared error combining (MMSEC) method. In MMSEC, many pilot symbols are required to converge the weight vectors, and if we use just a few pilot symbols, the performance cannot be improved very much. We therefore developed a method for calculating weight vectors for MMSEC that uses just a few pilot symbols. The impulse responses of all users are first estimated using the pilot symbols in the time domain and modulated by a discrete Fourier transform. Next, the correlation matrices and correlation vectors are estimated from the impulse responses and the spreading codes of all users. Finally, the weight vectors that are obtained from the correlation matrices and correlation vectors are multiplied by the received signal to suppress the multiuser interference. The results of computer simulations indicated that the bit-error-ratio performance obtained using this method was better than that obtained when using the conventional fading compensation scheme or when using conventional MMSEC with the recursive least squares algorithm.

  • An Adaptive Hybrid SR ARQ Scheme Using Punctured Trellis Coded Modulation and Code Combining

    Necmi TAPINAR  Eyup TUNA  

     
    LETTER-Fundamental Theories

      Vol:
    E85-B No:10
      Page(s):
    2338-2340

    In this letter, we describe an adaptive hybrid SR ARQ scheme using punctured TCM and code combining. Numerical results show that the proposed scheme yields better throughput efficiency than the scheme using TCM at the values of Es/No smaller than 9 dB.

  • Capacity Expressions for Power-Controlled Multi-Class DS-CDMA Reverse Link with Antenna Diversity and Rake Combining

    Fumiyuki ADACHI  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E85-B No:9
      Page(s):
    1854-1859

    A DS-CDMA mobile communication system accommodating multi-class users is considered. The number of supportable users depends on the distributions of data rate and required communication quality among users. Simple expressions for the reverse link capacity with transmit power control, antenna diversity, and rake combining, are derived for a single-cell system and a multi-cell system.

  • Pilot Channel Assisted MMSE Combining in Forward Link for Broadband OFCDM Packet Wireless Access

    Noriyuki MAEDA  Hiroyuki ATARASHI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1635-1646

    This paper proposes a pilot channel assisted minimum mean square error (MMSE) combining scheme in orthogonal frequency and code division multiplexing (OFCDM) based on actual signal-to-interference power ratio (SIR) estimation, and investigates the throughput performance in a broadband channel with a near 100-MHz bandwidth. In the proposed MMSE combining scheme, the combining weight of each sub-carrier component is accurately estimated from the channel gain, noise power, and transmission power ratio of all the code-multiplexed channels to the desired one, by exploiting the time-multiplexed common pilot channel in addition to the coded data channel. Simulation results elucidate that the required average received signal energy per bit-to-noise spectrum density ratio (Eb/N0) for the average packet error rate (PER) = 10-2 is improved by 0.6 and 1.2 dB by using the proposed MMSE combining instead of the conventional equal gain combining (EGC) in a 24-path Rayleigh fading channel (exponential decay path model, maximum delay time is approximately 1 µsec) in an isolated cell environment, when the number of multiplexed codes = 8 and 32, respectively, with the spreading factor of 32. Furthermore, when the average received Eb/N0 = 10 dB, the achievable throughput, i.e., the number of simultaneously multiplexed codes for the average PER = 10-2 in the proposed MMSE combining, is increased by approximately 1.3 fold that of the conventional EGC.

  • Combining Reception with Multiple Receive Antennas for Space Time Coded MPSK over Correlated Rayleigh Fading Channels

    Pingyi FAN  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    895-901

    This paper considers combining receptions with multiple receive antennas for space time coded MPSK signals over correlated Rayleigh fading channels. For the system with dual-antenna at receiver, a new transform is proposed, which can convert the correlated fading signals into uncorrelated ones. With the results obtained by using the proposed transform, the equivalent selective combining (SC) reception and maximum likelihood (ML) reception are presented. Theoretical analysis shows that ML reception has better performance than SC reception in terms of bit error rate. For the system with triple antenna at receiver, the simulation results are presented by using Monte Carlo method. All the results show that compared to using a receive antenna, a considerable signal to noise ratio gain can be obtained by using multiple receive antennas when the correlation coefficients among the receive antennas is not too high.

  • Experiments on Inter-Sector Diversity Using Maximal Ratio Combining in W-CDMA Reverse Link

    Akihito MORIMOTO  Kenichi HIGUCHI  Satoru FUKUMOTO  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E84-A No:12
      Page(s):
    3012-3025

    This paper evaluates the effect of inter-sector diversity with maximal ratio combining (MRC) coupled with coherent Rake combining and 2-branch antenna diversity reception in the transmit-power-controlled wideband direct sequence code division multiple access (W-CDMA) reverse link. We first elucidate based on laboratory experiments that the required average transmit signal energy per bit-to-background noise spectrum density ratio (Eb/N0) at the average bit error rate (BER) of 10-3 with inter-sector diversity using two sectors is decreased by approximately 1.4, 1.0, and 0.2 dB compared to that with inter-cell site diversity using two cell sites with antenna diversity reception due to the superiority of MRC to selection combining (SC), when the difference in the average path loss between a base station (BS) and a mobile station (MS) is Δ12 = 0, 3, and 6 dB, respectively. We also clarify in actual field experiments that the inter-sector diversity associated with Rake time diversity and antenna diversity further decreases the required average transmit power of a MS if the number of resolved paths is small such as 1 or 2 in each sector reception, even when the fading correlation between sectors is relatively large. Furthermore, we show that the required average transmit power of a MS for satisfying the average BER of 10-3 with inter-sector diversity is decreased above approximately 2.0-2.5 dB compared to that with one-sector reception, owing to the significantly increased inter-sector diversity effect in addition to the Rake time diversity and antenna diversity, when the fading correlation averaged over the measurement course is approximately 0.7.

  • Power Combining by a Fabry-Perot Resonator with Active Devices Mounted on Both the Mirrors

    Minoru SANAGI  Shigeji NOGI  

     
    PAPER

      Vol:
    E84-C No:10
      Page(s):
    1575-1580

    A power combining technique using a Fabry-Perot resonator with many more active devices is investigated. The Fabry-Perot power combiner consists of two mirrors with a circular groove mounted with the active devices. The power combiner has an axially symmetrical structure and operates at an axially symmetrical TEM01n mode so that uniform device-field coupling required for perfect power combining can be realized. By numerical calculation using the boundary element method, it was shown that high combining efficiency can be obtained when the active devices are mounted in the circular groove of larger radius on either of the two mirrors. In experiments at X-band, power combining efficiency over 90% was obtained for the case of twelve devices on either of the mirrors and the output powers of the twenty or twenty-four devices on both the mirrors were almost perfectly combined.

  • Average SNR of Generalized Selection Combining over Nakagami-m Fading Channels

    Chi Ming LO  Wong-Hing LAM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E84-B No:7
      Page(s):
    1952-1955

    Using moment generating function (MGF) of generalized selection combining (GSC) output signal-to-noise ratio (SNR), we derive closed-form expressions for average combined SNR at the output of GSC, which optimally combines the N largest out of L available diversity signals, over Nakagami-m fading channels for N = 2, 3 and L = 4. The Nakagami-m fading statistics on each diversity branch are assumed to be independent and identically distributed (i.i.d.). The average combined SNRs at the outputs of GSC receivers are also compared with the average combined SNRs at the outputs of conventional maximal ratio combining (MRC) and selection combining (SC).

  • The Modified Multistage Decoding Scheme (MMDS) for a Fast Frequency-Hopped Multiple Access MFSK System over a Rayleigh Fading Channel

    Yeomin YOON  Kiseon KIM  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:6
      Page(s):
    1631-1636

    The stage 3/2 decoding scheme, originally suggested by U. Timor, is modified for a Rayleigh fading channel to improve the performance of a fast frequency-hopped multiple access/multilevel frequency shift keying system. When signal-to-noise ratio per bit is 30 dB, the simulation results show that the modified stage 3/2 decoding scheme increases the spectral efficiency by 11% compared to the modified stage 1 decoding scheme at bit error rate of 10-3. Further, the performance comparisons are made between the modified multistage decoding scheme and the diversity combining methods, where the modified stage 3/2 decoding scheme shows better performance.

  • An Improved Voice Activity Detection Algorithm Employing Speech Enhancement Preprocessing

    Yoon-Chang LEE  Sang-Sik AHN  

     
    PAPER

      Vol:
    E84-A No:6
      Page(s):
    1401-1405

    In this paper, we first propose a new speech enhancement preprocessing algorithm by combining power subtraction method and maximal ratio combining technique, then apply it to both energy-based and statistical model-based VAD algorithm to improve the performance even in low SNR conditions. We also perform extensive computer simulations to demonstrate the performance improvement of the proposed VAD algorithm employing the proposed speech enhancement preprocessing algorithm under various background noise environments.

  • A Multi-Beam Combining Scheme for DS-CDMA Systems Using Weighting Factor Based on Interference Level

    Hiroyasu SANO  Nobuhisa KATAOKA  Hiroshi KUBO  Makoto MIYAKE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:5
      Page(s):
    1328-1336

    This paper focuses on a multi-beam combining scheme for DS-CDMA systems, which has RAKE combiners in multiple overlapped beams, in order to increase the reverse link capacity of DS-CDMA. This scheme is a very attractive technique because the maximal ratio combining (MRC) is carried out in space and time domains. However, in a practical situation, since the terminals in own sector are not uniformly located, the interference levels in respective beams are different. Therefore, receivers at the base station do not achieve ideal combining. This paper proposes a multi-beam combining scheme for DS-CDMA systems using weighting factor based on interference level of each beam. A fast closed loop transmission power control (TPC) scheme for the multi-beam combining system is also proposed. It is confirmed by computer simulation that the proposed scheme has excellent performance in the reverse link even if terminals in own sector are not uniformly located.

  • Experimental Evaluation of Coherent Rake Combining for Broadband Single-Carrier DS-CDMA Wireless Communications

    Takehiro IKEDA  Koichi OKAWA  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E84-B No:3
      Page(s):
    415-424

    This paper experimentally evaluates the bit error rate (BER) performance of single-carrier broadband DS-CDMA (B-CDMA) scheme using a 100-MHz bandwidth (chip rate of 81.92 Mcps) in frequency-selective multipath fading channels. The achievable information bit rate is 20.36 (2.5) Mbps when the spreading factor (SF) is SF = 4 (32). In order to achieve a high data-rate transmission with high quality (i.e., average BER is below 10-6), we apply pilot symbol-assisted coherent Rake receiving with a large number of Rake fingers (maximum number of Rake fingers is SF2), 2-branch antenna diversity reception, convolutional coding, and signal-to-interference power ratio (SIR) measurement-based fast closed-loop transmit power control (TPC). Experimental results show that the average BER of 10-6 for the 20.36 (2.5)-Mbps transmission is achieved at the required average transmit Eb/N0 of approximately 6.7 (5.0) dB when the number of multipaths is L = 2 and the maximum fading Doppler frequency is fD = 20 Hz. We also show that Rake time diversity and fast TPC are effective in a broadband propagation channel where many resolvable paths (such as 12 paths) are observed.

101-120hit(156hit)