To fully exploit the attribute information in graphs and dynamically fuse the features from different modalities, this letter proposes the Attributed Graph Clustering Network with Adaptive Feature Fusion (AGC-AFF) for graph clustering, where an Attribute Reconstruction Graph Autoencoder (ARGAE) with masking operation learns to reconstruct the node attributes and adjacency matrix simultaneously, and an Adaptive Feature Fusion (AFF) mechanism dynamically fuses the features from different modules based on node attention. Extensive experiments on various benchmark datasets demonstrate the effectiveness of the proposed method.
Yida HONG Yanlei YIN Cheng GUO Xiaobao LIU
Many scientific and technological resources (STR) cannot meet the needs of real demand-based industrial services. To address this issue, the characteristics of scientific and technological resource services (STRS) are analyzed, and a method of the optimal combination of demand-based STR based on multi-community collaborative search is then put forward. An optimal combined evaluative system that includes various indexes, namely response time, innovation, composability, and correlation, is developed for multi-services of STR, and a hybrid optimal combined model for STR is constructed. An evaluative algorithm of multi-community collaborative search is used to study the interactions between general communities and model communities, thereby improving the adaptive ability of the algorithm to random dynamic resource services. The average convergence value CMCCSA=0.00274 is obtained by the convergence measurement function, which exceeds other comparison algorithms. The findings of this study indicate that the proposed methods can preferably reach the maximum efficiency of demand-based STR, and new ideas and methods for implementing demand-based real industrial services for STR are provided.
While online communities are important platforms for various social activities, many online communities fail to survive, which motivates researchers to investigate factors affecting the growth and survival of online communities. We comprehensively examine the effects of a wide variety of social network features on the growth and survival of communities in Reddit. We show that several social network features, including clique ratio, density, clustering coefficient, reciprocity and centralization, have significant effects on the survival of communities. In contrast, we also show that social network features examined in this paper only have weak effects on the growth of communities. Moreover, we conducted experiments predicting future growth and survival of online communities utilizing social network features as well as contents and activity features in the communities. The results show that prediction models utilizing social network features as well as contents and activity features achieve approximately 30% higher F1 measure, which evaluates the prediction accuracy, than the models only using contents and activity features. In contrast, it is also shown that social network features are not effective for predicting the growth of communities.
Yu PAN Guyu HU Zhisong PAN Shuaihui WANG Dongsheng SHAO
Detecting community structures and analyzing temporal evolution in dynamic networks are challenging tasks to explore the inherent characteristics of the complex networks. In this paper, we propose a semi-supervised evolutionary clustering model based on symmetric nonnegative matrix factorization to detect communities in dynamic networks, named sEC-SNMF. We use the results of community partition at the previous time step as the priori information to modify the current network topology, then smooth-out the evolution of the communities and reduce the impact of noise. Furthermore, we introduce a community transition probability matrix to track and analyze the temporal evolutions. Different from previous algorithms, our approach does not need to know the number of communities in advance and can deal with the situation in which the number of communities and nodes varies over time. Extensive experiments on synthetic datasets demonstrate that the proposed method is competitive and has a superior performance.
Hongcui WANG Shanshan LIU Di JIN Lantian LI Jianwu DANG
Recognizing the different segments of speech belonging to the same speaker is an important speech analysis task in various applications. Recent works have shown that there was an underlying manifold on which speaker utterances live in the model-parameter space. However, most speaker clustering methods work on the Euclidean space, and hence often fail to discover the intrinsic geometrical structure of the data space and fail to use such kind of features. For this problem, we consider to convert the speaker i-vector representation of utterances in the Euclidean space into a network structure constructed based on the local (k) nearest neighbor relationship of these signals. We then propose an efficient community detection model on the speaker content network for clustering signals. The new model is based on the probabilistic community memberships, and is further refined with the idea that: if two connected nodes have a high similarity, their community membership distributions in the model should be made close. This refinement enhances the local invariance assumption, and thus better respects the structure of the underlying manifold than the existing community detection methods. Some experiments are conducted on graphs built from two Chinese speech databases and a NIST 2008 Speaker Recognition Evaluations (SREs). The results provided the insight into the structure of the speakers present in the data and also confirmed the effectiveness of the proposed new method. Our new method yields better performance compared to with the other state-of-the-art clustering algorithms. Metrics for constructing speaker content graph is also discussed.
Zhixiao WANG Mengnan HOU Guan YUAN Jing HE Jingjing CUI Mingjun ZHU
Social networks often demonstrate hierarchical community structure with communities embedded in other ones. Most existing hierarchical community detection methods need one or more tunable parameters to control the resolution levels, and the obtained dendrograms, a tree describing the hierarchical community structure, are extremely complex to understand and analyze. In the paper, we propose a parameter-free hierarchical community detection method based on micro-community and minimum spanning tree. The proposed method first identifies micro-communities based on link strength between adjacent vertices, and then, it constructs minimum spanning tree by successively linking these micro-communities one by one. The hierarchical community structure of social networks can be intuitively revealed from the merging order of these micro-communities. Experimental results on synthetic and real-world networks show that our proposed method exhibits good accuracy and efficiency performance and outperforms other state-of-the-art methods. In addition, our proposed method does not require any pre-defined parameters, and the output dendrogram is simple and meaningful for understanding and analyzing the hierarchical community structure of social networks.
Shuaihui WANG Guyu HU Zhisong PAN Jin ZHANG Dong LI
Signed networks are ubiquitous in the real world. It is of great significance to study the problem of community detection in signed networks. In general, the behaviors of nodes in a signed network are rational, which coincide with the players in the theory of game that can be used to model the process of the community formation. Unlike unsigned networks, signed networks include both positive and negative edges, representing the relationship of friends and foes respectively. In the process of community formation, nodes usually choose to be in the same community with friends and between different communities with enemies. Based on this idea, we proposed a game theory model to address the problem of community detection in signed networks. Taking nodes as players, we build a gain function based on the numbers of positive edges and negative edges inside and outside a community, and prove the existence of Nash equilibrium point. In this way, when the game reaches the Nash equilibrium state, the optimal strategy space for all nodes is the result of the final community division. To systematically investigate the performance of our method, elaborated experiments on both synthetic networks and real-world networks are conducted. Experimental results demonstrate that our method is not only more accurate than other existing algorithms, but also more robust to noise.
Hiroyoshi ITO Takahiro KOMAMIZU Toshiyuki AMAGASA Hiroyuki KITAGAWA
Multi-attributed graphs, in which each node is characterized by multiple types of attributes, are ubiquitous in the real world. Detection and characterization of communities of nodes could have a significant impact on various applications. Although previous studies have attempted to tackle this task, it is still challenging due to difficulties in the integration of graph structures with multiple attributes and the presence of noises in the graphs. Therefore, in this study, we have focused on clusters of attribute values and strong correlations between communities and attribute-value clusters. The graph clustering methodology adopted in the proposed study involves Community detection, Attribute-value clustering, and deriving Relationships between communities and attribute-value clusters (CAR for short). Based on these concepts, the proposed multi-attributed graph clustering is modeled as CAR-clustering. To achieve CAR-clustering, a novel algorithm named CARNMF is developed based on non-negative matrix factorization (NMF) that can detect CAR in a cooperative manner. Results obtained from experiments using real-world datasets show that the CARNMF can detect communities and attribute-value clusters more accurately than existing comparable methods. Furthermore, clustering results obtained using the CARNMF indicate that CARNMF can successfully detect informative communities with meaningful semantic descriptions through correlations between communities and attribute-value clusters.
Socially aware networking is an emerging research field that aims to improve the current networking technologies and realize novel network services by applying social network analysis (SNA) techniques. Conducting socially aware networking studies requires knowledge of both SNA and communication networking, but it is not easy for communication networking researchers who are unfamiliar with SNA to obtain comprehensive knowledge of SNA due to its interdisciplinary nature. This paper therefore aims to fill the knowledge gap for networking researchers who are interested in socially aware networking but are not familiar with SNA. This paper surveys three types of important SNA techniques for socially aware networking: identification of influential nodes, link prediction, and community detection. Then, this paper introduces how SNA techniques are used in socially aware networking and discusses research trends in socially aware networking.
Ryoya FURUKAWA Ryoichi ISAWA Masakatu MORII Daisuke INOUE Koji NAKAO
Malicious software (malware) poses various significant challenges. One is the need to retrieve plain-text messages transmitted between malware and herders through an encrypted network channel. Those messages (e.g., commands for malware) can be a useful hint to reveal their malicious activities. However, the retrieving is challenging even if the malware is executed on an analysis computer. To assist analysts in retrieving the plain-text from the memory, this paper presents FCReducer(Function Candidate Reducer), which provides a small candidate set of cryptographic functions called by malware. Given this set, an analyst checks candidates to locate cryptographic functions. If the decryption function is found, she then obtains its output as the plain-text. Although existing systems such as CipherXRay have been proposed to locate cryptographic functions, they heavily rely on fine-grained dynamic taint analysis (DTA). This makes them weak against under-tainting, which means failure of tracking data propagation. To overcome under-tainting, FCReducer conducts coarse-grained DTA and generates a typical data dependency graph of functions in which the root function accesses an encrypted message. This does not require fine-grained DTA. FCReducer then applies a community detection method such as InfoMap to the graph for detecting a community of functions that plays a role in decryption or encryption. The functions in this community are provided as candidates. With experiments using 12 samples including four malware specimens, we confirmed that FCReducer reduced, for example, 4830 functions called by Zeus malware to 0.87% as candidates. We also propose a heuristic to reduce candidates more greatly.
Zhen LI Zhisong PAN Guyu HU Guopeng LI Xingyu ZHOU
Community detection is an important task in the social network analysis field. Many detection methods have been developed; however, they provide little semantic interpretation for the discovered communities. We develop a framework based on joint matrix factorization to integrate network topology and node content information, such that the communities and their semantic labels are derived simultaneously. Moreover, to improve the detection accuracy, we attempt to make the community relationships derived from two types of information consistent. Experimental results on real-world networks show the superior performance of the proposed method and demonstrate its ability to semantically annotate communities.
Jiang ZHU Bai WANG Bin WU Weiyu ZHANG
Community detection is a pivotal task in data mining, and users' emotional behaviors have an important impact on today's society. So it is very significant for society management or marketing strategies to detect emotional communities in social networks. Based on the emotional homophily of users in social networks, it could confirm that users would like to gather together to form communities according to emotional similarity. This paper exploits multivariate emotional behaviors of users to measure users' emotional similarity, then takes advantage of users' emotional similarity as edge weight to remodel an emotional network and detect communities. The detailed process of detecting emotional communities is as follows: 1) an emotional network is constructed and emotional homophily in experimental dataset is verified; 2) both CNM and BGLL algorithms are employed to detect emotional communities in emotional network, and emotional characters of each community are analyzed; 3) in order to verify the superiority of emotional network for detecting emotional communities, 1 unweighted network and 3 other weighted and undirected networks are constructed as comparison. Comparison experiments indicate that the emotional network is more suitable for detecting emotional communities, the users' emotional behaviors are more similar and denser in identical communities of emotional network than the contrastive networks' communities.
Liangliang ZHANG Longqi YANG Yong GONG Zhisong PAN Yanyan ZHANG Guyu HU
In multi-view social networks field, a flexible Nonnegative Matrix Factorization (NMF) based framework is proposed which integrates multi-view relation data and feature data for community discovery. Benefit with a relaxed pairwise regularization and a novel orthogonal regularization, it outperforms the-state-of-art algorithms on five real-world datasets in terms of accuracy and NMI.
Ding XIAO Rui WANG Lingling WU
With the surge of social media platform, users' profile information become treasure to enhance social network services. However, attributes information of most users are not complete, thus it is important to infer latent attributes of users. Contemporary attribute inference methods have a basic assumption that there are enough labeled data to train a model. However, in social media, it is very expensive and difficult to label a large amount of data. In this paper, we study the latent attribute inference problem with very small labeled data and propose the SRW-COND solution. In order to solve the difficulty of small labeled data, SRW-COND firstly extends labeled data with a simple but effective greedy algorithm. Then SRW-COND employs a supervised random walk process to effectively utilize the known attributes information and link structure of users. Experiments on two real datasets illustrate the effectiveness of SRW-COND.
Online used markets such as eBay, Yahoo Auction, and Craigslist have been popular due to the web services. Compared to the shopping mall websites like eBay or Yahoo Auction, web community-style used markets often expose the private information of sellers. In Korea, the most popular online used market is a website called “Joonggonara” with more than 13 million users, and it uses an informal posting format that does not protect the users' privacy identifiable information. In this work, we examine the privacy leakage from the online used markets in Korea, and show that 45.9% and 74.0% of sample data expose cellular phone numbers and email addresses, respectively. In addition, we demonstrate that the private information can be maliciously exploited to identify a subscriber of the social network service.
The link structure of the Web is generally viewed as a webgraph. One of the main objectives of web structure mining is to find hidden communities on the Web based on the webgraph, and one of its approaches tries to enumerate substructures, each of which corresponds to a set of web pages of a community or its core. Research has shown that certain substructures can find sets of pages that are inherently irrelevant to communities. In this paper, we propose a model, which we call contracted webgraphs, where such substructures are contracted into single nodes to hide useless information. We then try structure mining iteratively on those contracted webgraphs since we can expect to find further hidden information once irrelevant information is eliminated. We also explore the structural properties of contracted webgraphs from the viewpoint of scale-freeness, and we observe that they exhibit novel and extreme self-similarities.
A smart community can be considered an essential component to realize a sustainable, low-carbon, and disaster-tolerant society, thereby providing a base for community inhabitants to lead a simple, healthy, and energy-saving way of life as well as ensuring safety, security, and a high quality-of-life in the community. In particular, a smart community can be essential for senior citizens in an aging society. Smart community enablers such as information and communication technology (ICT) and electric vehicles (EVs) can perform essential roles to realize a smart community. With regard to ICT, the necessity of a dedicated wireless sensor backbone has been identified. With regard to EV, a small-sized EV with one or two seats (Mini-EV) has been identified as an emerging player to support personal daily mobility in an aged society. The Mini-EV may be powered by a solar battery, thereby mitigating vehicular maintenance burden for the elderly. It is essential to realize a dependable ICT network and communication service for a smart community. In the study, we present the concept of trans-locatable design to achieve this goal. The two possible roles of EVs in contributing to a dependable ICT network are highlighted; these include EV charging of the batteries of the base stations in the network, and the creation of a Mini-EV based ad-hoc network that can enable applications such as safe driving assistance and secure neighborhoods.
Guangchun LUO Junbao ZHANG Ke QIN Haifeng SUN
This letter proposes an efficient Location-Aware Social Routing (LASR) scheme for Delay Tolerant Networks (DTNs). LASR makes forwarding decisions based on a new metric which uses location information to reflect the node relations and community structure. Simulation results are presented to support the effectiveness of our scheme.
Chi GUO Li-na WANG Xiao-ying ZHANG
Network structure has a great impact both on hazard spread and network immunization. The vulnerability of the network node is associated with each other, assortative or disassortative. Firstly, an algorithm for vulnerability relevance clustering is proposed to show that the vulnerability community phenomenon is obviously existent in complex networks. On this basis, next, a new indicator called network “hyper-betweenness” is given for evaluating the vulnerability of network node. Network hyper-betweenness can reflect the importance of network node in hazard spread better. Finally, the dynamic stochastic process of hazard spread is simulated based on Monte-Carlo sampling method and a two-player, non-cooperative, constant-sum game model is designed to obtain an equilibrated network immunization strategy.
Fan WEI Xiaodong LU Kinji MORI
Wireless Sensor Network(WSN) is widely used in Emergency Management System(EMS) to assure high safety. Real-timely transmitting emergency information in dynamically changing environment should be assured in mission critical district. Conventional methods based on static situations and centralized approaches can not satisfy this requirement. In this paper, to assure real-time property, autonomous community construction technology is proposed to set special area called community which includes a special passage composed of several routers for emergency information's transmission and routers around this passage in one hop range. Emergency information's transmission is protected by routers around this passage from interference of other sensing information's transmission in and outside community. Moreover, autonomous community reconstruction technology is proposed to guarantee real-time property at failure conditions. In this technology, community members autonomously cooperate and coordinate with each other to setup a bypass in community for transmitting emergency information if fault happens. Evaluation results indicate effectiveness of proposed technology.