The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] compaction(22hit)

21-22hit(22hit)

  • Optimal Constraint Graph Generation Algorithm for Layout Compaction Using Enhanced Plane-Sweep Method

    Toru AWASHIMA  Masao SATO  Tatsuo OHTSUKI  

     
    PAPER

      Vol:
    E76-A No:4
      Page(s):
    507-512

    This paper presents an optimal constraint graph generation algorithm for graph-based one-dimensional layout compaction. The first published algorithm for this problem was the shadow-propagation algorithm. However, without sophisticated implementation of a shadow-front, complexity of the algorithm could fall into O(n2), where n is the number of layout objects. Although our algorithm, called the enhanced plane-sweep based graph generation algorithm, is an extension of the shadow-propagation algorithm, such a drawback is resolved by introducing an enhanced plane-sweep technique. The algorithm maintains multiple shadow-fronts simultaneously by storing them in a work-list called previous-boundary. Since a balanced search tree is selected for implementation of the worklist, total complexity of the algorithm is O(n log n) which is optimal. Experimental results show that the enhanced plane-sweep based graph generation algorithm runs in almost linear time with respect to the number of layout objects and is faster than the perpendicular plane-sweep algorithm which is also optimal in terms of time complexity.

  • An Automatic Layout Generator for Bipolar Analog Modules

    Takao ONOYE  Akihisa YAMADA  Itthichai ARUNGSRISANGCHAI  Masakazu TANAKA  Isao SHIRAKAWA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1306-1314

    An autonatic layout scheme dedicated to bipolar analog modules is described. A layout model is settled in such a way that the VCC/GND line is laid out on top/bottom edge of a rectangular region, within which the whole elements are placed and interconnected. According to this simple modeling, a layout scheme can be constructed of a series of the following algorithms: First clustering is executed for partitioning a given circuit into clusters, each having connections with VCC and GND lines, and then linear ordering is applied to clusters so as to be placed in a one-dimensional array. After a relative placement of circuits elements in each cluster, a block compactor is implemented by means of packing blocks in each cluster into an idle space, and then a detailed router is conducted to attain 100% interconnection. Finally a layout compactor is invoked to pack all layout patterns into a rectangle of the minimum possible area. A number of implementation results are also shown to reveal the practicability of the proposed analog module generator.

21-22hit(22hit)