The search functionality is under construction.

Keyword Search Result

[Keyword] constant magnetic field(2hit)

1-2hit
  • 3-D Finite Element Analysis of Dynamic Characteristics of Twin-Type Relay Interfered by Uniform Constant Magnetic Field

    Guofu ZHAI  Wenying YANG  Xue ZHOU  

     
    PAPER-Contact Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1215-1221

    Research on the electromagnetic compatibility of functional module composed of two independent electromagnetic relays in a hermetically sealed shell is the technical foundation for integration and miniaturization of electronic equipment in the future. In this paper, 3D finite element method (FEM) was used to analyze the dynamic characteristics of twin-type relay interfered by uniform constant magnetic field and identify the sensitive direction in which the relay was easily interfered. The models of twin-type relay in three working states were founded. Through simulation and analysis, it was found out how the operation time and electromagnetic torque of twin-type relay changed with the outer interfered magnetic field. When the relay was on the point of operation failure, the critical value of magnetic field was calculated through simulation. The simulation results of the dynamic characteristics of twin-type relay agree well with the experimental data. The conclusion in this paper is of great value for research on the electromagnetic compatibility of relay functional module.

  • Constant Magnetic Field Scaling in Inductive-Coupling Data Link

    Daisuke MIZOGUCHI  Noriyuki MIURA  Hiroki ISHIKURO  Tadahiro KURODA  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:2
      Page(s):
    200-205

    A wireless transceiver utilizing inductive coupling has been proposed for communication between chips in system in a package. This transceiver can achieve high-speed communication by using two-dimensional channel arrays. To increase the total bandwidth in the channel arrays, the density of the transceiver should be improved, which means that the inductor size should be scaled down. This paper discusses the scaling theory based on a constant magnetic field rule. By decreasing the chip thickness with the process scaling of 1/α, the inductor size can be scaled to 1/α and the data rate can be increased by α. As a result, the number of aggregated channels can be increased by α2 and the aggregated data bandwidth can be increased by α3. The scaling theory is verified by simulations and experiments in 350, 250, 180, and 90 nm CMOS.